Line data Source code
1 : /* SPDX-License-Identifier: BSD-3-Clause
2 : * Copyright (C) 2015 Intel Corporation. All rights reserved.
3 : * Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
4 : */
5 :
6 : #include "spdk/config.h"
7 : #include "spdk/nvmf_spec.h"
8 : #include "spdk/string.h"
9 : #include "spdk/env.h"
10 : #include "nvme_internal.h"
11 : #include "nvme_io_msg.h"
12 :
13 : #define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"
14 :
15 : struct nvme_driver *g_spdk_nvme_driver;
16 : pid_t g_spdk_nvme_pid;
17 :
18 : /* gross timeout of 180 seconds in milliseconds */
19 : static int g_nvme_driver_timeout_ms = 3 * 60 * 1000;
20 :
21 : /* Per-process attached controller list */
22 : static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_attached_ctrlrs =
23 : TAILQ_HEAD_INITIALIZER(g_nvme_attached_ctrlrs);
24 :
25 : /* Returns true if ctrlr should be stored on the multi-process shared_attached_ctrlrs list */
26 : static bool
27 12 : nvme_ctrlr_shared(const struct spdk_nvme_ctrlr *ctrlr)
28 : {
29 12 : return ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE;
30 : }
31 :
32 : void
33 0 : nvme_ctrlr_connected(struct spdk_nvme_probe_ctx *probe_ctx,
34 : struct spdk_nvme_ctrlr *ctrlr)
35 : {
36 0 : TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
37 0 : }
38 :
39 : static void
40 10 : nvme_ctrlr_detach_async_finish(struct spdk_nvme_ctrlr *ctrlr)
41 : {
42 10 : nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
43 10 : if (nvme_ctrlr_shared(ctrlr)) {
44 8 : TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
45 : } else {
46 2 : TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq);
47 : }
48 10 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
49 10 : }
50 :
51 : static int
52 11 : nvme_ctrlr_detach_async(struct spdk_nvme_ctrlr *ctrlr,
53 : struct nvme_ctrlr_detach_ctx **_ctx)
54 : {
55 : struct nvme_ctrlr_detach_ctx *ctx;
56 : int ref_count;
57 :
58 11 : nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
59 :
60 11 : ref_count = nvme_ctrlr_get_ref_count(ctrlr);
61 11 : assert(ref_count > 0);
62 :
63 11 : if (ref_count == 1) {
64 : /* This is the last reference to the controller, so we need to
65 : * allocate a context to destruct it.
66 : */
67 10 : ctx = calloc(1, sizeof(*ctx));
68 10 : if (ctx == NULL) {
69 0 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
70 :
71 0 : return -ENOMEM;
72 : }
73 10 : ctx->ctrlr = ctrlr;
74 10 : ctx->cb_fn = nvme_ctrlr_detach_async_finish;
75 :
76 10 : nvme_ctrlr_proc_put_ref(ctrlr);
77 :
78 10 : nvme_io_msg_ctrlr_detach(ctrlr);
79 :
80 10 : nvme_ctrlr_destruct_async(ctrlr, ctx);
81 :
82 10 : *_ctx = ctx;
83 : } else {
84 1 : nvme_ctrlr_proc_put_ref(ctrlr);
85 : }
86 :
87 11 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
88 :
89 11 : return 0;
90 : }
91 :
92 : static int
93 11 : nvme_ctrlr_detach_poll_async(struct nvme_ctrlr_detach_ctx *ctx)
94 : {
95 : int rc;
96 :
97 11 : rc = nvme_ctrlr_destruct_poll_async(ctx->ctrlr, ctx);
98 11 : if (rc == -EAGAIN) {
99 1 : return -EAGAIN;
100 : }
101 :
102 10 : free(ctx);
103 :
104 10 : return rc;
105 : }
106 :
107 : int
108 5 : spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
109 : {
110 5 : struct nvme_ctrlr_detach_ctx *ctx = NULL;
111 : int rc;
112 :
113 5 : rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
114 5 : if (rc != 0) {
115 0 : return rc;
116 5 : } else if (ctx == NULL) {
117 : /* ctrlr was detached from the caller process but any other process
118 : * still attaches it.
119 : */
120 1 : return 0;
121 : }
122 :
123 : while (1) {
124 4 : rc = nvme_ctrlr_detach_poll_async(ctx);
125 4 : if (rc != -EAGAIN) {
126 4 : break;
127 : }
128 0 : nvme_delay(1000);
129 : }
130 :
131 4 : return 0;
132 : }
133 :
134 : int
135 6 : spdk_nvme_detach_async(struct spdk_nvme_ctrlr *ctrlr,
136 : struct spdk_nvme_detach_ctx **_detach_ctx)
137 : {
138 : struct spdk_nvme_detach_ctx *detach_ctx;
139 6 : struct nvme_ctrlr_detach_ctx *ctx = NULL;
140 : int rc;
141 :
142 6 : if (ctrlr == NULL || _detach_ctx == NULL) {
143 0 : return -EINVAL;
144 : }
145 :
146 : /* Use a context header to poll detachment for multiple controllers.
147 : * Allocate an new one if not allocated yet, or use the passed one otherwise.
148 : */
149 6 : detach_ctx = *_detach_ctx;
150 6 : if (detach_ctx == NULL) {
151 3 : detach_ctx = calloc(1, sizeof(*detach_ctx));
152 3 : if (detach_ctx == NULL) {
153 0 : return -ENOMEM;
154 : }
155 3 : TAILQ_INIT(&detach_ctx->head);
156 : }
157 :
158 6 : rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
159 6 : if (rc != 0 || ctx == NULL) {
160 : /* If this detach failed and the context header is empty, it means we just
161 : * allocated the header and need to free it before returning.
162 : */
163 0 : if (TAILQ_EMPTY(&detach_ctx->head)) {
164 0 : free(detach_ctx);
165 : }
166 0 : return rc;
167 : }
168 :
169 : /* Append a context for this detachment to the context header. */
170 6 : TAILQ_INSERT_TAIL(&detach_ctx->head, ctx, link);
171 :
172 6 : *_detach_ctx = detach_ctx;
173 :
174 6 : return 0;
175 : }
176 :
177 : int
178 4 : spdk_nvme_detach_poll_async(struct spdk_nvme_detach_ctx *detach_ctx)
179 : {
180 : struct nvme_ctrlr_detach_ctx *ctx, *tmp_ctx;
181 : int rc;
182 :
183 4 : if (detach_ctx == NULL) {
184 0 : return -EINVAL;
185 : }
186 :
187 11 : TAILQ_FOREACH_SAFE(ctx, &detach_ctx->head, link, tmp_ctx) {
188 7 : TAILQ_REMOVE(&detach_ctx->head, ctx, link);
189 :
190 7 : rc = nvme_ctrlr_detach_poll_async(ctx);
191 7 : if (rc == -EAGAIN) {
192 : /* If not -EAGAIN, ctx was freed by nvme_ctrlr_detach_poll_async(). */
193 1 : TAILQ_INSERT_HEAD(&detach_ctx->head, ctx, link);
194 : }
195 : }
196 :
197 4 : if (!TAILQ_EMPTY(&detach_ctx->head)) {
198 1 : return -EAGAIN;
199 : }
200 :
201 3 : free(detach_ctx);
202 3 : return 0;
203 : }
204 :
205 : void
206 0 : spdk_nvme_detach_poll(struct spdk_nvme_detach_ctx *detach_ctx)
207 : {
208 0 : while (detach_ctx && spdk_nvme_detach_poll_async(detach_ctx) == -EAGAIN) {
209 : ;
210 : }
211 0 : }
212 :
213 : void
214 1 : nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
215 : {
216 1 : struct nvme_completion_poll_status *status = arg;
217 :
218 1 : if (status->timed_out) {
219 : /* There is no routine waiting for the completion of this request, free allocated memory */
220 0 : spdk_free(status->dma_data);
221 0 : free(status);
222 0 : return;
223 : }
224 :
225 : /*
226 : * Copy status into the argument passed by the caller, so that
227 : * the caller can check the status to determine if the
228 : * the request passed or failed.
229 : */
230 1 : memcpy(&status->cpl, cpl, sizeof(*cpl));
231 1 : status->done = true;
232 : }
233 :
234 : static void
235 0 : dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
236 : {
237 0 : }
238 :
239 : int
240 10 : nvme_wait_for_completion_robust_lock_timeout_poll(struct spdk_nvme_qpair *qpair,
241 : struct nvme_completion_poll_status *status,
242 : pthread_mutex_t *robust_mutex)
243 : {
244 : int rc;
245 :
246 10 : if (robust_mutex) {
247 5 : nvme_robust_mutex_lock(robust_mutex);
248 : }
249 :
250 10 : if (qpair->poll_group) {
251 0 : rc = (int)spdk_nvme_poll_group_process_completions(qpair->poll_group->group, 0,
252 : dummy_disconnected_qpair_cb);
253 : } else {
254 10 : rc = spdk_nvme_qpair_process_completions(qpair, 0);
255 : }
256 :
257 10 : if (robust_mutex) {
258 5 : nvme_robust_mutex_unlock(robust_mutex);
259 : }
260 :
261 10 : if (rc < 0) {
262 4 : status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
263 4 : status->cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
264 4 : goto error;
265 : }
266 :
267 6 : if (!status->done && status->timeout_tsc && spdk_get_ticks() > status->timeout_tsc) {
268 2 : goto error;
269 : }
270 :
271 4 : if (qpair->ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
272 4 : union spdk_nvme_csts_register csts = spdk_nvme_ctrlr_get_regs_csts(qpair->ctrlr);
273 4 : if (csts.raw == SPDK_NVME_INVALID_REGISTER_VALUE) {
274 0 : status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
275 0 : status->cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
276 0 : goto error;
277 : }
278 : }
279 :
280 4 : if (!status->done) {
281 0 : return -EAGAIN;
282 4 : } else if (spdk_nvme_cpl_is_error(&status->cpl)) {
283 0 : return -EIO;
284 : } else {
285 4 : return 0;
286 : }
287 6 : error:
288 : /* Either transport error occurred or we've timed out. Either way, if the response hasn't
289 : * been received yet, mark the command as timed out, so the status gets freed when the
290 : * command is completed or aborted.
291 : */
292 6 : if (!status->done) {
293 6 : status->timed_out = true;
294 : }
295 :
296 6 : return -ECANCELED;
297 : }
298 :
299 : /**
300 : * Poll qpair for completions until a command completes.
301 : *
302 : * \param qpair queue to poll
303 : * \param status completion status. The user must fill this structure with zeroes before calling
304 : * this function
305 : * \param robust_mutex optional robust mutex to lock while polling qpair
306 : * \param timeout_in_usecs optional timeout
307 : *
308 : * \return 0 if command completed without error,
309 : * -EIO if command completed with error,
310 : * -ECANCELED if command is not completed due to transport/device error or time expired
311 : *
312 : * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
313 : * and status as the callback argument.
314 : */
315 : int
316 10 : nvme_wait_for_completion_robust_lock_timeout(
317 : struct spdk_nvme_qpair *qpair,
318 : struct nvme_completion_poll_status *status,
319 : pthread_mutex_t *robust_mutex,
320 : uint64_t timeout_in_usecs)
321 : {
322 : int rc;
323 :
324 10 : if (timeout_in_usecs) {
325 6 : status->timeout_tsc = spdk_get_ticks() + timeout_in_usecs *
326 6 : spdk_get_ticks_hz() / SPDK_SEC_TO_USEC;
327 : } else {
328 4 : status->timeout_tsc = 0;
329 : }
330 :
331 10 : status->cpl.status_raw = 0;
332 : do {
333 10 : rc = nvme_wait_for_completion_robust_lock_timeout_poll(qpair, status, robust_mutex);
334 10 : } while (rc == -EAGAIN);
335 :
336 10 : return rc;
337 : }
338 :
339 : /**
340 : * Poll qpair for completions until a command completes.
341 : *
342 : * \param qpair queue to poll
343 : * \param status completion status. The user must fill this structure with zeroes before calling
344 : * this function
345 : * \param robust_mutex optional robust mutex to lock while polling qpair
346 : *
347 : * \return 0 if command completed without error,
348 : * -EIO if command completed with error,
349 : * -ECANCELED if command is not completed due to transport/device error
350 : *
351 : * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
352 : * and status as the callback argument.
353 : */
354 : int
355 2 : nvme_wait_for_completion_robust_lock(
356 : struct spdk_nvme_qpair *qpair,
357 : struct nvme_completion_poll_status *status,
358 : pthread_mutex_t *robust_mutex)
359 : {
360 2 : return nvme_wait_for_completion_robust_lock_timeout(qpair, status, robust_mutex, 0);
361 : }
362 :
363 : int
364 2 : nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
365 : struct nvme_completion_poll_status *status)
366 : {
367 2 : return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, 0);
368 : }
369 :
370 : /**
371 : * Poll qpair for completions until a command completes.
372 : *
373 : * \param qpair queue to poll
374 : * \param status completion status. The user must fill this structure with zeroes before calling
375 : * this function
376 : * \param timeout_in_usecs optional timeout
377 : *
378 : * \return 0 if command completed without error,
379 : * -EIO if command completed with error,
380 : * -ECANCELED if command is not completed due to transport/device error or time expired
381 : *
382 : * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
383 : * and status as the callback argument.
384 : */
385 : int
386 3 : nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
387 : struct nvme_completion_poll_status *status,
388 : uint64_t timeout_in_usecs)
389 : {
390 3 : return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, timeout_in_usecs);
391 : }
392 :
393 : static void
394 3 : nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
395 : {
396 3 : struct nvme_request *req = arg;
397 : spdk_nvme_cmd_cb user_cb_fn;
398 : void *user_cb_arg;
399 : enum spdk_nvme_data_transfer xfer;
400 :
401 3 : if (req->user_buffer && req->payload_size) {
402 : /* Copy back to the user buffer */
403 2 : assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
404 2 : xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
405 2 : if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
406 : xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
407 1 : assert(req->pid == getpid());
408 1 : memcpy(req->user_buffer, req->payload.contig_or_cb_arg, req->payload_size);
409 : }
410 : }
411 :
412 3 : user_cb_fn = req->user_cb_fn;
413 3 : user_cb_arg = req->user_cb_arg;
414 3 : nvme_cleanup_user_req(req);
415 :
416 : /* Call the user's original callback now that the buffer has been copied */
417 3 : user_cb_fn(user_cb_arg, cpl);
418 :
419 3 : }
420 :
421 : /**
422 : * Allocate a request as well as a DMA-capable buffer to copy to/from the user's buffer.
423 : *
424 : * This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
425 : * where the overhead of a copy is not a problem.
426 : */
427 : struct nvme_request *
428 14 : nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
429 : void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
430 : void *cb_arg, bool host_to_controller)
431 : {
432 : struct nvme_request *req;
433 14 : void *dma_buffer = NULL;
434 :
435 14 : if (buffer && payload_size) {
436 13 : dma_buffer = spdk_zmalloc(payload_size, 4096, NULL,
437 : SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
438 13 : if (!dma_buffer) {
439 1 : return NULL;
440 : }
441 :
442 12 : if (host_to_controller) {
443 8 : memcpy(dma_buffer, buffer, payload_size);
444 : }
445 : }
446 :
447 13 : req = nvme_allocate_request_contig(qpair, dma_buffer, payload_size, nvme_user_copy_cmd_complete,
448 : NULL);
449 13 : if (!req) {
450 1 : spdk_free(dma_buffer);
451 1 : return NULL;
452 : }
453 :
454 12 : req->user_cb_fn = cb_fn;
455 12 : req->user_cb_arg = cb_arg;
456 12 : req->user_buffer = buffer;
457 12 : req->cb_arg = req;
458 :
459 12 : return req;
460 : }
461 :
462 : /**
463 : * Check if a request has exceeded the controller timeout.
464 : *
465 : * \param req request to check for timeout.
466 : * \param cid command ID for command submitted by req (will be passed to timeout_cb_fn)
467 : * \param active_proc per-process data for the controller associated with req
468 : * \param now_tick current time from spdk_get_ticks()
469 : * \return 0 if requests submitted more recently than req should still be checked for timeouts, or
470 : * 1 if requests newer than req need not be checked.
471 : *
472 : * The request's timeout callback will be called if needed; the caller is only responsible for
473 : * calling this function on each outstanding request.
474 : */
475 : int
476 6 : nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
477 : struct spdk_nvme_ctrlr_process *active_proc,
478 : uint64_t now_tick)
479 : {
480 6 : struct spdk_nvme_qpair *qpair = req->qpair;
481 6 : struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
482 6 : uint64_t timeout_ticks = nvme_qpair_is_admin_queue(qpair) ?
483 6 : active_proc->timeout_admin_ticks : active_proc->timeout_io_ticks;
484 :
485 6 : assert(active_proc->timeout_cb_fn != NULL);
486 :
487 6 : if (req->timed_out || req->submit_tick == 0) {
488 2 : return 0;
489 : }
490 :
491 4 : if (req->pid != g_spdk_nvme_pid) {
492 1 : return 0;
493 : }
494 :
495 3 : if (nvme_qpair_is_admin_queue(qpair) &&
496 1 : req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
497 1 : return 0;
498 : }
499 :
500 2 : if (req->submit_tick + timeout_ticks > now_tick) {
501 1 : return 1;
502 : }
503 :
504 1 : req->timed_out = true;
505 :
506 : /*
507 : * We don't want to expose the admin queue to the user,
508 : * so when we're timing out admin commands set the
509 : * qpair to NULL.
510 : */
511 1 : active_proc->timeout_cb_fn(active_proc->timeout_cb_arg, ctrlr,
512 1 : nvme_qpair_is_admin_queue(qpair) ? NULL : qpair,
513 : cid);
514 1 : return 0;
515 : }
516 :
517 : int
518 7 : nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
519 : {
520 7 : int rc = 0;
521 :
522 : #ifdef __FreeBSD__
523 : pthread_mutex_init(mtx, NULL);
524 : #else
525 7 : pthread_mutexattr_t attr;
526 :
527 7 : if (pthread_mutexattr_init(&attr)) {
528 2 : return -1;
529 : }
530 10 : if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
531 10 : pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
532 5 : pthread_mutex_init(mtx, &attr)) {
533 1 : rc = -1;
534 : }
535 5 : pthread_mutexattr_destroy(&attr);
536 : #endif
537 :
538 5 : return rc;
539 : }
540 :
541 : int
542 32 : nvme_driver_init(void)
543 : {
544 : static pthread_mutex_t g_init_mutex = PTHREAD_MUTEX_INITIALIZER;
545 32 : int ret = 0;
546 :
547 : /* Use a special process-private mutex to ensure the global
548 : * nvme driver object (g_spdk_nvme_driver) gets initialized by
549 : * only one thread. Once that object is established and its
550 : * mutex is initialized, we can unlock this mutex and use that
551 : * one instead.
552 : */
553 32 : pthread_mutex_lock(&g_init_mutex);
554 :
555 : /* Each process needs its own pid. */
556 32 : g_spdk_nvme_pid = getpid();
557 :
558 : /*
559 : * Only one thread from one process will do this driver init work.
560 : * The primary process will reserve the shared memory and do the
561 : * initialization.
562 : * The secondary process will lookup the existing reserved memory.
563 : */
564 32 : if (spdk_process_is_primary()) {
565 : /* The unique named memzone already reserved. */
566 14 : if (g_spdk_nvme_driver != NULL) {
567 9 : pthread_mutex_unlock(&g_init_mutex);
568 9 : return 0;
569 : } else {
570 5 : g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
571 : sizeof(struct nvme_driver), SPDK_ENV_NUMA_ID_ANY,
572 : SPDK_MEMZONE_NO_IOVA_CONTIG);
573 : }
574 :
575 5 : if (g_spdk_nvme_driver == NULL) {
576 1 : SPDK_ERRLOG("primary process failed to reserve memory\n");
577 1 : pthread_mutex_unlock(&g_init_mutex);
578 1 : return -1;
579 : }
580 : } else {
581 18 : g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);
582 :
583 : /* The unique named memzone already reserved by the primary process. */
584 18 : if (g_spdk_nvme_driver != NULL) {
585 15 : int ms_waited = 0;
586 :
587 : /* Wait the nvme driver to get initialized. */
588 115 : while ((g_spdk_nvme_driver->initialized == false) &&
589 101 : (ms_waited < g_nvme_driver_timeout_ms)) {
590 100 : ms_waited++;
591 100 : nvme_delay(1000); /* delay 1ms */
592 : }
593 15 : if (g_spdk_nvme_driver->initialized == false) {
594 1 : SPDK_ERRLOG("timeout waiting for primary process to init\n");
595 1 : pthread_mutex_unlock(&g_init_mutex);
596 1 : return -1;
597 : }
598 : } else {
599 3 : SPDK_ERRLOG("primary process is not started yet\n");
600 3 : pthread_mutex_unlock(&g_init_mutex);
601 3 : return -1;
602 : }
603 :
604 14 : pthread_mutex_unlock(&g_init_mutex);
605 14 : return 0;
606 : }
607 :
608 : /*
609 : * At this moment, only one thread from the primary process will do
610 : * the g_spdk_nvme_driver initialization
611 : */
612 4 : assert(spdk_process_is_primary());
613 :
614 4 : ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
615 4 : if (ret != 0) {
616 1 : SPDK_ERRLOG("failed to initialize mutex\n");
617 1 : spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
618 1 : pthread_mutex_unlock(&g_init_mutex);
619 1 : return ret;
620 : }
621 :
622 : /* The lock in the shared g_spdk_nvme_driver object is now ready to
623 : * be used - so we can unlock the g_init_mutex here.
624 : */
625 3 : pthread_mutex_unlock(&g_init_mutex);
626 3 : nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
627 :
628 3 : g_spdk_nvme_driver->initialized = false;
629 3 : g_spdk_nvme_driver->hotplug_fd = spdk_pci_event_listen();
630 3 : if (g_spdk_nvme_driver->hotplug_fd < 0) {
631 0 : SPDK_DEBUGLOG(nvme, "Failed to open uevent netlink socket\n");
632 : }
633 :
634 3 : TAILQ_INIT(&g_spdk_nvme_driver->shared_attached_ctrlrs);
635 :
636 3 : spdk_uuid_generate(&g_spdk_nvme_driver->default_extended_host_id);
637 :
638 3 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
639 :
640 3 : return ret;
641 : }
642 :
643 : /* This function must only be called while holding g_spdk_nvme_driver->lock */
644 : int
645 6 : nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid,
646 : struct spdk_nvme_probe_ctx *probe_ctx, void *devhandle)
647 : {
648 : struct spdk_nvme_ctrlr *ctrlr;
649 6 : struct spdk_nvme_ctrlr_opts opts;
650 :
651 6 : assert(trid != NULL);
652 :
653 6 : spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
654 :
655 6 : if (!probe_ctx->probe_cb || probe_ctx->probe_cb(probe_ctx->cb_ctx, trid, &opts)) {
656 5 : ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid, opts.hostnqn);
657 5 : if (ctrlr) {
658 : /* This ctrlr already exists. */
659 :
660 1 : if (ctrlr->is_destructed) {
661 : /* This ctrlr is being destructed asynchronously. */
662 1 : SPDK_ERRLOG("NVMe controller for SSD: %s is being destructed\n",
663 : trid->traddr);
664 1 : probe_ctx->attach_fail_cb(probe_ctx->cb_ctx, trid, -EBUSY);
665 1 : return -EBUSY;
666 : }
667 :
668 : /* Increase the ref count before calling attach_cb() as the user may
669 : * call nvme_detach() immediately. */
670 0 : nvme_ctrlr_proc_get_ref(ctrlr);
671 :
672 0 : if (probe_ctx->attach_cb) {
673 0 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
674 0 : probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
675 0 : nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
676 : }
677 0 : return 0;
678 : }
679 :
680 4 : ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle);
681 4 : if (ctrlr == NULL) {
682 2 : SPDK_ERRLOG("Failed to construct NVMe controller for SSD: %s\n", trid->traddr);
683 2 : probe_ctx->attach_fail_cb(probe_ctx->cb_ctx, trid, -ENODEV);
684 2 : return -1;
685 : }
686 2 : ctrlr->remove_cb = probe_ctx->remove_cb;
687 2 : ctrlr->cb_ctx = probe_ctx->cb_ctx;
688 :
689 2 : nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
690 2 : TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
691 2 : return 0;
692 : }
693 :
694 1 : return 1;
695 : }
696 :
697 : static void
698 3 : nvme_ctrlr_poll_internal(struct spdk_nvme_ctrlr *ctrlr,
699 : struct spdk_nvme_probe_ctx *probe_ctx)
700 : {
701 3 : int rc = 0;
702 :
703 3 : rc = nvme_ctrlr_process_init(ctrlr);
704 :
705 3 : if (rc) {
706 : /* Controller failed to initialize. */
707 1 : TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
708 1 : SPDK_ERRLOG("Failed to initialize SSD: %s\n", ctrlr->trid.traddr);
709 1 : probe_ctx->attach_fail_cb(probe_ctx->cb_ctx, &ctrlr->trid, rc);
710 1 : nvme_ctrlr_lock(ctrlr);
711 1 : nvme_ctrlr_fail(ctrlr, false);
712 1 : nvme_ctrlr_unlock(ctrlr);
713 1 : nvme_ctrlr_destruct(ctrlr);
714 1 : return;
715 : }
716 :
717 2 : if (ctrlr->state != NVME_CTRLR_STATE_READY) {
718 0 : return;
719 : }
720 :
721 2 : STAILQ_INIT(&ctrlr->io_producers);
722 :
723 : /*
724 : * Controller has been initialized.
725 : * Move it to the attached_ctrlrs list.
726 : */
727 2 : TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
728 :
729 2 : nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
730 2 : if (nvme_ctrlr_shared(ctrlr)) {
731 1 : TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
732 : } else {
733 1 : TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, ctrlr, tailq);
734 : }
735 :
736 : /*
737 : * Increase the ref count before calling attach_cb() as the user may
738 : * call nvme_detach() immediately.
739 : */
740 2 : nvme_ctrlr_proc_get_ref(ctrlr);
741 2 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
742 :
743 2 : if (probe_ctx->attach_cb) {
744 0 : probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
745 : }
746 : }
747 :
748 : static int
749 14 : nvme_init_controllers(struct spdk_nvme_probe_ctx *probe_ctx)
750 : {
751 14 : int rc = 0;
752 :
753 : while (true) {
754 14 : rc = spdk_nvme_probe_poll_async(probe_ctx);
755 14 : if (rc != -EAGAIN) {
756 14 : return rc;
757 : }
758 : }
759 :
760 : return rc;
761 : }
762 :
763 : /* This function must not be called while holding g_spdk_nvme_driver->lock */
764 : static struct spdk_nvme_ctrlr *
765 13 : nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
766 : {
767 : struct spdk_nvme_ctrlr *ctrlr;
768 :
769 13 : nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
770 13 : ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid, hostnqn);
771 13 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
772 :
773 13 : return ctrlr;
774 : }
775 :
776 : /* This function must be called while holding g_spdk_nvme_driver->lock */
777 : struct spdk_nvme_ctrlr *
778 18 : nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
779 : {
780 : struct spdk_nvme_ctrlr *ctrlr;
781 :
782 : /* Search per-process list */
783 18 : TAILQ_FOREACH(ctrlr, &g_nvme_attached_ctrlrs, tailq) {
784 1 : if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) != 0) {
785 0 : continue;
786 : }
787 1 : if (hostnqn && strcmp(ctrlr->opts.hostnqn, hostnqn) != 0) {
788 0 : continue;
789 : }
790 1 : return ctrlr;
791 : }
792 :
793 : /* Search multi-process shared list */
794 17 : TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
795 12 : if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) != 0) {
796 0 : continue;
797 : }
798 12 : if (hostnqn && strcmp(ctrlr->opts.hostnqn, hostnqn) != 0) {
799 0 : continue;
800 : }
801 12 : return ctrlr;
802 : }
803 :
804 5 : return NULL;
805 : }
806 :
807 : /* This function must only be called while holding g_spdk_nvme_driver->lock */
808 : static int
809 13 : nvme_probe_internal(struct spdk_nvme_probe_ctx *probe_ctx,
810 : bool direct_connect)
811 : {
812 : int rc;
813 : struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
814 13 : const struct spdk_nvme_ctrlr_opts *opts = probe_ctx->opts;
815 :
816 13 : if (strlen(probe_ctx->trid.trstring) == 0) {
817 : /* If user didn't provide trstring, derive it from trtype */
818 10 : spdk_nvme_trid_populate_transport(&probe_ctx->trid, probe_ctx->trid.trtype);
819 : }
820 :
821 13 : if (!spdk_nvme_transport_available_by_name(probe_ctx->trid.trstring)) {
822 1 : SPDK_ERRLOG("NVMe trtype %u (%s) not available\n",
823 : probe_ctx->trid.trtype, probe_ctx->trid.trstring);
824 1 : return -1;
825 : }
826 :
827 12 : nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
828 :
829 12 : rc = nvme_transport_ctrlr_scan(probe_ctx, direct_connect);
830 12 : if (rc != 0) {
831 1 : SPDK_ERRLOG("NVMe ctrlr scan failed\n");
832 2 : TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
833 1 : TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
834 1 : probe_ctx->attach_fail_cb(probe_ctx->cb_ctx, &ctrlr->trid, -EFAULT);
835 1 : nvme_transport_ctrlr_destruct(ctrlr);
836 : }
837 1 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
838 1 : return -1;
839 : }
840 :
841 : /*
842 : * Probe controllers on the shared_attached_ctrlrs list
843 : */
844 11 : if (!spdk_process_is_primary() && (probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) {
845 13 : TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
846 : /* Do not attach other ctrlrs if user specify a valid trid */
847 11 : if ((strlen(probe_ctx->trid.traddr) != 0) &&
848 5 : (spdk_nvme_transport_id_compare(&probe_ctx->trid, &ctrlr->trid))) {
849 0 : continue;
850 : }
851 :
852 6 : if (opts && strcmp(opts->hostnqn, ctrlr->opts.hostnqn) != 0) {
853 0 : continue;
854 : }
855 :
856 : /* Do not attach if we failed to initialize it in this process */
857 6 : if (nvme_ctrlr_get_current_process(ctrlr) == NULL) {
858 0 : continue;
859 : }
860 :
861 6 : nvme_ctrlr_proc_get_ref(ctrlr);
862 :
863 : /*
864 : * Unlock while calling attach_cb() so the user can call other functions
865 : * that may take the driver lock, like nvme_detach().
866 : */
867 6 : if (probe_ctx->attach_cb) {
868 1 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
869 1 : probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
870 1 : nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
871 : }
872 : }
873 : }
874 :
875 11 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
876 :
877 11 : return 0;
878 : }
879 :
880 : static void
881 0 : nvme_dummy_attach_fail_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
882 : int rc)
883 : {
884 0 : SPDK_ERRLOG("Failed to attach nvme ctrlr: trtype=%s adrfam=%s traddr=%s trsvcid=%s "
885 : "subnqn=%s, %s\n", spdk_nvme_transport_id_trtype_str(trid->trtype),
886 : spdk_nvme_transport_id_adrfam_str(trid->adrfam), trid->traddr, trid->trsvcid,
887 : trid->subnqn, spdk_strerror(-rc));
888 0 : }
889 :
890 : static void
891 17 : nvme_probe_ctx_init(struct spdk_nvme_probe_ctx *probe_ctx,
892 : const struct spdk_nvme_transport_id *trid,
893 : const struct spdk_nvme_ctrlr_opts *opts,
894 : void *cb_ctx,
895 : spdk_nvme_probe_cb probe_cb,
896 : spdk_nvme_attach_cb attach_cb,
897 : spdk_nvme_attach_fail_cb attach_fail_cb,
898 : spdk_nvme_remove_cb remove_cb)
899 : {
900 17 : probe_ctx->trid = *trid;
901 17 : probe_ctx->opts = opts;
902 17 : probe_ctx->cb_ctx = cb_ctx;
903 17 : probe_ctx->probe_cb = probe_cb;
904 17 : probe_ctx->attach_cb = attach_cb;
905 17 : if (attach_fail_cb != NULL) {
906 6 : probe_ctx->attach_fail_cb = attach_fail_cb;
907 : } else {
908 11 : probe_ctx->attach_fail_cb = nvme_dummy_attach_fail_cb;
909 : }
910 17 : probe_ctx->remove_cb = remove_cb;
911 17 : TAILQ_INIT(&probe_ctx->init_ctrlrs);
912 17 : }
913 :
914 : int
915 0 : spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
916 : spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
917 : spdk_nvme_remove_cb remove_cb)
918 : {
919 0 : return spdk_nvme_probe_ext(trid, cb_ctx, probe_cb, attach_cb, NULL, remove_cb);
920 : }
921 :
922 : int
923 4 : spdk_nvme_probe_ext(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
924 : spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
925 : spdk_nvme_attach_fail_cb attach_fail_cb, spdk_nvme_remove_cb remove_cb)
926 : {
927 4 : struct spdk_nvme_transport_id trid_pcie;
928 : struct spdk_nvme_probe_ctx *probe_ctx;
929 :
930 4 : if (trid == NULL) {
931 4 : memset(&trid_pcie, 0, sizeof(trid_pcie));
932 4 : spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
933 4 : trid = &trid_pcie;
934 : }
935 :
936 4 : probe_ctx = spdk_nvme_probe_async_ext(trid, cb_ctx, probe_cb,
937 : attach_cb, attach_fail_cb, remove_cb);
938 4 : if (!probe_ctx) {
939 2 : SPDK_ERRLOG("Create probe context failed\n");
940 2 : return -1;
941 : }
942 :
943 : /*
944 : * Keep going even if one or more nvme_attach() calls failed,
945 : * but maintain the value of rc to signal errors when we return.
946 : */
947 2 : return nvme_init_controllers(probe_ctx);
948 : }
949 :
950 : static bool
951 4 : nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
952 : struct spdk_nvme_ctrlr_opts *opts)
953 : {
954 4 : struct spdk_nvme_ctrlr_opts *requested_opts = cb_ctx;
955 :
956 4 : assert(requested_opts);
957 4 : memcpy(opts, requested_opts, sizeof(*opts));
958 :
959 4 : return true;
960 : }
961 :
962 : static void
963 4 : nvme_ctrlr_opts_init(struct spdk_nvme_ctrlr_opts *opts,
964 : const struct spdk_nvme_ctrlr_opts *opts_user,
965 : size_t opts_size_user)
966 : {
967 4 : assert(opts);
968 4 : assert(opts_user);
969 :
970 4 : spdk_nvme_ctrlr_get_default_ctrlr_opts(opts, opts_size_user);
971 :
972 : #define FIELD_OK(field) \
973 : offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= (opts->opts_size)
974 :
975 : #define SET_FIELD(field) \
976 : if (FIELD_OK(field)) { \
977 : opts->field = opts_user->field; \
978 : }
979 :
980 : #define SET_FIELD_ARRAY(field) \
981 : if (FIELD_OK(field)) { \
982 : memcpy(opts->field, opts_user->field, sizeof(opts_user->field)); \
983 : }
984 :
985 4 : SET_FIELD(num_io_queues);
986 4 : SET_FIELD(use_cmb_sqs);
987 4 : SET_FIELD(no_shn_notification);
988 4 : SET_FIELD(arb_mechanism);
989 4 : SET_FIELD(arbitration_burst);
990 4 : SET_FIELD(low_priority_weight);
991 4 : SET_FIELD(medium_priority_weight);
992 4 : SET_FIELD(high_priority_weight);
993 4 : SET_FIELD(keep_alive_timeout_ms);
994 4 : SET_FIELD(transport_retry_count);
995 4 : SET_FIELD(io_queue_size);
996 4 : SET_FIELD_ARRAY(hostnqn);
997 4 : SET_FIELD(io_queue_requests);
998 4 : SET_FIELD_ARRAY(src_addr);
999 4 : SET_FIELD_ARRAY(src_svcid);
1000 4 : SET_FIELD_ARRAY(host_id);
1001 4 : SET_FIELD_ARRAY(extended_host_id);
1002 4 : SET_FIELD(command_set);
1003 4 : SET_FIELD(admin_timeout_ms);
1004 4 : SET_FIELD(header_digest);
1005 4 : SET_FIELD(data_digest);
1006 4 : SET_FIELD(disable_error_logging);
1007 4 : SET_FIELD(transport_ack_timeout);
1008 4 : SET_FIELD(admin_queue_size);
1009 4 : SET_FIELD(fabrics_connect_timeout_us);
1010 4 : SET_FIELD(disable_read_ana_log_page);
1011 4 : SET_FIELD(disable_read_changed_ns_list_log_page);
1012 4 : SET_FIELD(tls_psk);
1013 4 : SET_FIELD(dhchap_key);
1014 4 : SET_FIELD(dhchap_ctrlr_key);
1015 4 : SET_FIELD(dhchap_digests);
1016 4 : SET_FIELD(dhchap_dhgroups);
1017 :
1018 : #undef FIELD_OK
1019 : #undef SET_FIELD
1020 : #undef SET_FIELD_ARRAY
1021 4 : }
1022 :
1023 : struct spdk_nvme_ctrlr *
1024 11 : spdk_nvme_connect(const struct spdk_nvme_transport_id *trid,
1025 : const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
1026 : {
1027 : int rc;
1028 11 : struct spdk_nvme_ctrlr *ctrlr = NULL;
1029 : struct spdk_nvme_probe_ctx *probe_ctx;
1030 11 : struct spdk_nvme_ctrlr_opts *opts_local_p = NULL;
1031 11 : struct spdk_nvme_ctrlr_opts opts_local;
1032 11 : char hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
1033 :
1034 11 : if (trid == NULL) {
1035 1 : SPDK_ERRLOG("No transport ID specified\n");
1036 1 : return NULL;
1037 : }
1038 :
1039 10 : rc = nvme_driver_init();
1040 10 : if (rc != 0) {
1041 1 : return NULL;
1042 : }
1043 :
1044 9 : nvme_get_default_hostnqn(hostnqn, sizeof(hostnqn));
1045 9 : if (opts) {
1046 4 : opts_local_p = &opts_local;
1047 4 : nvme_ctrlr_opts_init(opts_local_p, opts, opts_size);
1048 4 : memcpy(hostnqn, opts_local.hostnqn, sizeof(hostnqn));
1049 : }
1050 :
1051 9 : probe_ctx = spdk_nvme_connect_async(trid, opts_local_p, NULL);
1052 9 : if (!probe_ctx) {
1053 0 : SPDK_ERRLOG("Create probe context failed\n");
1054 0 : return NULL;
1055 : }
1056 :
1057 9 : rc = nvme_init_controllers(probe_ctx);
1058 9 : if (rc != 0) {
1059 0 : return NULL;
1060 : }
1061 :
1062 9 : ctrlr = nvme_get_ctrlr_by_trid(trid, hostnqn);
1063 :
1064 9 : return ctrlr;
1065 : }
1066 :
1067 : void
1068 14 : spdk_nvme_trid_populate_transport(struct spdk_nvme_transport_id *trid,
1069 : enum spdk_nvme_transport_type trtype)
1070 : {
1071 : const char *trstring;
1072 :
1073 14 : trid->trtype = trtype;
1074 14 : switch (trtype) {
1075 0 : case SPDK_NVME_TRANSPORT_FC:
1076 0 : trstring = SPDK_NVME_TRANSPORT_NAME_FC;
1077 0 : break;
1078 14 : case SPDK_NVME_TRANSPORT_PCIE:
1079 14 : trstring = SPDK_NVME_TRANSPORT_NAME_PCIE;
1080 14 : break;
1081 0 : case SPDK_NVME_TRANSPORT_RDMA:
1082 0 : trstring = SPDK_NVME_TRANSPORT_NAME_RDMA;
1083 0 : break;
1084 0 : case SPDK_NVME_TRANSPORT_TCP:
1085 0 : trstring = SPDK_NVME_TRANSPORT_NAME_TCP;
1086 0 : break;
1087 0 : case SPDK_NVME_TRANSPORT_VFIOUSER:
1088 0 : trstring = SPDK_NVME_TRANSPORT_NAME_VFIOUSER;
1089 0 : break;
1090 0 : case SPDK_NVME_TRANSPORT_CUSTOM:
1091 0 : trstring = SPDK_NVME_TRANSPORT_NAME_CUSTOM;
1092 0 : break;
1093 0 : default:
1094 0 : SPDK_ERRLOG("no available transports\n");
1095 0 : assert(0);
1096 : return;
1097 : }
1098 14 : snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
1099 : }
1100 :
1101 : int
1102 11 : spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
1103 : {
1104 11 : int i = 0;
1105 :
1106 11 : if (trid == NULL || trstring == NULL) {
1107 0 : return -EINVAL;
1108 : }
1109 :
1110 : /* Note: gcc-11 has some false positive -Wstringop-overread warnings with LTO builds if we
1111 : * use strnlen here. So do the trstring copy manually instead. See GitHub issue #2391.
1112 : */
1113 :
1114 : /* cast official trstring to uppercase version of input. */
1115 54 : while (i < SPDK_NVMF_TRSTRING_MAX_LEN && trstring[i] != 0) {
1116 43 : trid->trstring[i] = toupper(trstring[i]);
1117 43 : i++;
1118 : }
1119 :
1120 11 : if (trstring[i] != 0) {
1121 0 : return -EINVAL;
1122 : } else {
1123 11 : trid->trstring[i] = 0;
1124 11 : return 0;
1125 : }
1126 : }
1127 :
1128 : int
1129 22 : spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str)
1130 : {
1131 22 : if (trtype == NULL || str == NULL) {
1132 2 : return -EINVAL;
1133 : }
1134 :
1135 20 : if (strcasecmp(str, "PCIe") == 0) {
1136 11 : *trtype = SPDK_NVME_TRANSPORT_PCIE;
1137 9 : } else if (strcasecmp(str, "RDMA") == 0) {
1138 3 : *trtype = SPDK_NVME_TRANSPORT_RDMA;
1139 6 : } else if (strcasecmp(str, "FC") == 0) {
1140 2 : *trtype = SPDK_NVME_TRANSPORT_FC;
1141 4 : } else if (strcasecmp(str, "TCP") == 0) {
1142 3 : *trtype = SPDK_NVME_TRANSPORT_TCP;
1143 1 : } else if (strcasecmp(str, "VFIOUSER") == 0) {
1144 0 : *trtype = SPDK_NVME_TRANSPORT_VFIOUSER;
1145 : } else {
1146 1 : *trtype = SPDK_NVME_TRANSPORT_CUSTOM;
1147 : }
1148 20 : return 0;
1149 : }
1150 :
1151 : const char *
1152 5 : spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
1153 : {
1154 5 : switch (trtype) {
1155 1 : case SPDK_NVME_TRANSPORT_PCIE:
1156 1 : return "PCIe";
1157 1 : case SPDK_NVME_TRANSPORT_RDMA:
1158 1 : return "RDMA";
1159 1 : case SPDK_NVME_TRANSPORT_FC:
1160 1 : return "FC";
1161 1 : case SPDK_NVME_TRANSPORT_TCP:
1162 1 : return "TCP";
1163 0 : case SPDK_NVME_TRANSPORT_VFIOUSER:
1164 0 : return "VFIOUSER";
1165 0 : case SPDK_NVME_TRANSPORT_CUSTOM:
1166 0 : return "CUSTOM";
1167 1 : default:
1168 1 : return NULL;
1169 : }
1170 : }
1171 :
1172 : int
1173 13 : spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str)
1174 : {
1175 13 : if (adrfam == NULL || str == NULL) {
1176 2 : return -EINVAL;
1177 : }
1178 :
1179 11 : if (strcasecmp(str, "IPv4") == 0) {
1180 4 : *adrfam = SPDK_NVMF_ADRFAM_IPV4;
1181 7 : } else if (strcasecmp(str, "IPv6") == 0) {
1182 2 : *adrfam = SPDK_NVMF_ADRFAM_IPV6;
1183 5 : } else if (strcasecmp(str, "IB") == 0) {
1184 2 : *adrfam = SPDK_NVMF_ADRFAM_IB;
1185 3 : } else if (strcasecmp(str, "FC") == 0) {
1186 2 : *adrfam = SPDK_NVMF_ADRFAM_FC;
1187 : } else {
1188 1 : return -ENOENT;
1189 : }
1190 10 : return 0;
1191 : }
1192 :
1193 : const char *
1194 5 : spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam)
1195 : {
1196 5 : switch (adrfam) {
1197 1 : case SPDK_NVMF_ADRFAM_IPV4:
1198 1 : return "IPv4";
1199 1 : case SPDK_NVMF_ADRFAM_IPV6:
1200 1 : return "IPv6";
1201 1 : case SPDK_NVMF_ADRFAM_IB:
1202 1 : return "IB";
1203 1 : case SPDK_NVMF_ADRFAM_FC:
1204 1 : return "FC";
1205 1 : default:
1206 1 : return NULL;
1207 : }
1208 : }
1209 :
1210 : static size_t
1211 38 : parse_next_key(const char **str, char *key, char *val, size_t key_buf_size, size_t val_buf_size)
1212 : {
1213 :
1214 : const char *sep, *sep1;
1215 38 : const char *whitespace = " \t\n";
1216 : size_t key_len, val_len;
1217 :
1218 38 : *str += strspn(*str, whitespace);
1219 :
1220 38 : sep = strchr(*str, ':');
1221 38 : if (!sep) {
1222 1 : sep = strchr(*str, '=');
1223 1 : if (!sep) {
1224 1 : SPDK_ERRLOG("Key without ':' or '=' separator\n");
1225 1 : return 0;
1226 : }
1227 : } else {
1228 37 : sep1 = strchr(*str, '=');
1229 37 : if ((sep1 != NULL) && (sep1 < sep)) {
1230 4 : sep = sep1;
1231 : }
1232 : }
1233 :
1234 37 : key_len = sep - *str;
1235 37 : if (key_len >= key_buf_size) {
1236 1 : SPDK_ERRLOG("Key length %zu greater than maximum allowed %zu\n",
1237 : key_len, key_buf_size - 1);
1238 1 : return 0;
1239 : }
1240 :
1241 36 : memcpy(key, *str, key_len);
1242 36 : key[key_len] = '\0';
1243 :
1244 36 : *str += key_len + 1; /* Skip key: */
1245 36 : val_len = strcspn(*str, whitespace);
1246 36 : if (val_len == 0) {
1247 1 : SPDK_ERRLOG("Key without value\n");
1248 1 : return 0;
1249 : }
1250 :
1251 35 : if (val_len >= val_buf_size) {
1252 0 : SPDK_ERRLOG("Value length %zu greater than maximum allowed %zu\n",
1253 : val_len, val_buf_size - 1);
1254 0 : return 0;
1255 : }
1256 :
1257 35 : memcpy(val, *str, val_len);
1258 35 : val[val_len] = '\0';
1259 :
1260 35 : *str += val_len;
1261 :
1262 35 : return val_len;
1263 : }
1264 :
1265 : int
1266 17 : spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str)
1267 : {
1268 : size_t val_len;
1269 17 : char key[32];
1270 17 : char val[1024];
1271 :
1272 17 : if (trid == NULL || str == NULL) {
1273 3 : return -EINVAL;
1274 : }
1275 :
1276 43 : while (*str != '\0') {
1277 :
1278 32 : val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
1279 :
1280 32 : if (val_len == 0) {
1281 3 : SPDK_ERRLOG("Failed to parse transport ID\n");
1282 3 : return -EINVAL;
1283 : }
1284 :
1285 29 : if (strcasecmp(key, "trtype") == 0) {
1286 11 : if (spdk_nvme_transport_id_populate_trstring(trid, val) != 0) {
1287 0 : SPDK_ERRLOG("invalid transport '%s'\n", val);
1288 0 : return -EINVAL;
1289 : }
1290 11 : if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) {
1291 0 : SPDK_ERRLOG("Unknown trtype '%s'\n", val);
1292 0 : return -EINVAL;
1293 : }
1294 18 : } else if (strcasecmp(key, "adrfam") == 0) {
1295 2 : if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) {
1296 0 : SPDK_ERRLOG("Unknown adrfam '%s'\n", val);
1297 0 : return -EINVAL;
1298 : }
1299 16 : } else if (strcasecmp(key, "traddr") == 0) {
1300 11 : if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
1301 0 : SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n",
1302 : val_len, SPDK_NVMF_TRADDR_MAX_LEN);
1303 0 : return -EINVAL;
1304 : }
1305 11 : memcpy(trid->traddr, val, val_len + 1);
1306 5 : } else if (strcasecmp(key, "trsvcid") == 0) {
1307 2 : if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
1308 0 : SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
1309 : val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
1310 0 : return -EINVAL;
1311 : }
1312 2 : memcpy(trid->trsvcid, val, val_len + 1);
1313 3 : } else if (strcasecmp(key, "priority") == 0) {
1314 1 : if (val_len > SPDK_NVMF_PRIORITY_MAX_LEN) {
1315 0 : SPDK_ERRLOG("priority length %zu greater than maximum allowed %u\n",
1316 : val_len, SPDK_NVMF_PRIORITY_MAX_LEN);
1317 0 : return -EINVAL;
1318 : }
1319 1 : trid->priority = spdk_strtol(val, 10);
1320 2 : } else if (strcasecmp(key, "subnqn") == 0) {
1321 2 : if (val_len > SPDK_NVMF_NQN_MAX_LEN) {
1322 0 : SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n",
1323 : val_len, SPDK_NVMF_NQN_MAX_LEN);
1324 0 : return -EINVAL;
1325 : }
1326 2 : memcpy(trid->subnqn, val, val_len + 1);
1327 0 : } else if (strcasecmp(key, "hostaddr") == 0) {
1328 0 : continue;
1329 0 : } else if (strcasecmp(key, "hostsvcid") == 0) {
1330 0 : continue;
1331 0 : } else if (strcasecmp(key, "hostnqn") == 0) {
1332 0 : continue;
1333 0 : } else if (strcasecmp(key, "ns") == 0) {
1334 : /*
1335 : * Special case. The namespace id parameter may
1336 : * optionally be passed in the transport id string
1337 : * for an SPDK application (e.g. spdk_nvme_perf)
1338 : * and additionally parsed therein to limit
1339 : * targeting a specific namespace. For this
1340 : * scenario, just silently ignore this key
1341 : * rather than letting it default to logging
1342 : * it as an invalid key.
1343 : */
1344 0 : continue;
1345 0 : } else if (strcasecmp(key, "alt_traddr") == 0) {
1346 : /*
1347 : * Used by applications for enabling transport ID failover.
1348 : * Please see the case above for more information on custom parameters.
1349 : */
1350 0 : continue;
1351 : } else {
1352 0 : SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
1353 : }
1354 : }
1355 :
1356 11 : return 0;
1357 : }
1358 :
1359 : int
1360 3 : spdk_nvme_host_id_parse(struct spdk_nvme_host_id *hostid, const char *str)
1361 3 : {
1362 :
1363 3 : size_t key_size = 32;
1364 3 : size_t val_size = 1024;
1365 : size_t val_len;
1366 3 : char key[key_size];
1367 3 : char val[val_size];
1368 :
1369 3 : if (hostid == NULL || str == NULL) {
1370 0 : return -EINVAL;
1371 : }
1372 :
1373 6 : while (*str != '\0') {
1374 :
1375 3 : val_len = parse_next_key(&str, key, val, key_size, val_size);
1376 :
1377 3 : if (val_len == 0) {
1378 0 : SPDK_ERRLOG("Failed to parse host ID\n");
1379 0 : return val_len;
1380 : }
1381 :
1382 : /* Ignore the rest of the options from the transport ID. */
1383 3 : if (strcasecmp(key, "trtype") == 0) {
1384 1 : continue;
1385 2 : } else if (strcasecmp(key, "adrfam") == 0) {
1386 0 : continue;
1387 2 : } else if (strcasecmp(key, "traddr") == 0) {
1388 0 : continue;
1389 2 : } else if (strcasecmp(key, "trsvcid") == 0) {
1390 0 : continue;
1391 2 : } else if (strcasecmp(key, "subnqn") == 0) {
1392 0 : continue;
1393 2 : } else if (strcasecmp(key, "priority") == 0) {
1394 0 : continue;
1395 2 : } else if (strcasecmp(key, "ns") == 0) {
1396 0 : continue;
1397 2 : } else if (strcasecmp(key, "hostaddr") == 0) {
1398 1 : if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
1399 0 : SPDK_ERRLOG("hostaddr length %zu greater than maximum allowed %u\n",
1400 : val_len, SPDK_NVMF_TRADDR_MAX_LEN);
1401 0 : return -EINVAL;
1402 : }
1403 1 : memcpy(hostid->hostaddr, val, val_len + 1);
1404 :
1405 1 : } else if (strcasecmp(key, "hostsvcid") == 0) {
1406 1 : if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
1407 0 : SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
1408 : val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
1409 0 : return -EINVAL;
1410 : }
1411 1 : memcpy(hostid->hostsvcid, val, val_len + 1);
1412 : } else {
1413 0 : SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
1414 : }
1415 : }
1416 :
1417 3 : return 0;
1418 : }
1419 :
1420 : static int
1421 37 : cmp_int(int a, int b)
1422 : {
1423 37 : return a - b;
1424 : }
1425 :
1426 : int
1427 30 : spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1,
1428 : const struct spdk_nvme_transport_id *trid2)
1429 : {
1430 : int cmp;
1431 :
1432 30 : if (trid1->trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
1433 0 : cmp = strcasecmp(trid1->trstring, trid2->trstring);
1434 : } else {
1435 30 : cmp = cmp_int(trid1->trtype, trid2->trtype);
1436 : }
1437 :
1438 30 : if (cmp) {
1439 1 : return cmp;
1440 : }
1441 :
1442 29 : if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) {
1443 21 : struct spdk_pci_addr pci_addr1 = {};
1444 21 : struct spdk_pci_addr pci_addr2 = {};
1445 :
1446 : /* Normalize PCI addresses before comparing */
1447 42 : if (spdk_pci_addr_parse(&pci_addr1, trid1->traddr) < 0 ||
1448 21 : spdk_pci_addr_parse(&pci_addr2, trid2->traddr) < 0) {
1449 0 : return -1;
1450 : }
1451 :
1452 : /* PCIe transport ID only uses trtype and traddr */
1453 21 : return spdk_pci_addr_compare(&pci_addr1, &pci_addr2);
1454 : }
1455 :
1456 8 : cmp = strcasecmp(trid1->traddr, trid2->traddr);
1457 8 : if (cmp) {
1458 1 : return cmp;
1459 : }
1460 :
1461 7 : cmp = cmp_int(trid1->adrfam, trid2->adrfam);
1462 7 : if (cmp) {
1463 1 : return cmp;
1464 : }
1465 :
1466 6 : cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid);
1467 6 : if (cmp) {
1468 1 : return cmp;
1469 : }
1470 :
1471 5 : cmp = strcmp(trid1->subnqn, trid2->subnqn);
1472 5 : if (cmp) {
1473 2 : return cmp;
1474 : }
1475 :
1476 3 : return 0;
1477 : }
1478 :
1479 : int
1480 4 : spdk_nvme_prchk_flags_parse(uint32_t *prchk_flags, const char *str)
1481 : {
1482 : size_t val_len;
1483 4 : char key[32];
1484 4 : char val[1024];
1485 :
1486 4 : if (prchk_flags == NULL || str == NULL) {
1487 1 : return -EINVAL;
1488 : }
1489 :
1490 6 : while (*str != '\0') {
1491 3 : val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
1492 :
1493 3 : if (val_len == 0) {
1494 0 : SPDK_ERRLOG("Failed to parse prchk\n");
1495 0 : return -EINVAL;
1496 : }
1497 :
1498 3 : if (strcasecmp(key, "prchk") == 0) {
1499 3 : if (strcasestr(val, "reftag") != NULL) {
1500 2 : *prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG;
1501 : }
1502 3 : if (strcasestr(val, "guard") != NULL) {
1503 2 : *prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD;
1504 : }
1505 : } else {
1506 0 : SPDK_ERRLOG("Unknown key '%s'\n", key);
1507 0 : return -EINVAL;
1508 : }
1509 : }
1510 :
1511 3 : return 0;
1512 : }
1513 :
1514 : const char *
1515 3 : spdk_nvme_prchk_flags_str(uint32_t prchk_flags)
1516 : {
1517 3 : if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) {
1518 2 : if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
1519 1 : return "prchk:reftag|guard";
1520 : } else {
1521 1 : return "prchk:reftag";
1522 : }
1523 : } else {
1524 1 : if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
1525 1 : return "prchk:guard";
1526 : } else {
1527 0 : return NULL;
1528 : }
1529 : }
1530 : }
1531 :
1532 : int
1533 0 : spdk_nvme_scan_attached(const struct spdk_nvme_transport_id *trid)
1534 : {
1535 : int rc;
1536 : struct spdk_nvme_probe_ctx *probe_ctx;
1537 :
1538 0 : rc = nvme_driver_init();
1539 0 : if (rc != 0) {
1540 0 : return rc;
1541 : }
1542 :
1543 0 : probe_ctx = calloc(1, sizeof(*probe_ctx));
1544 0 : if (!probe_ctx) {
1545 0 : return -ENOMEM;
1546 : }
1547 :
1548 0 : nvme_probe_ctx_init(probe_ctx, trid, NULL, NULL, NULL, NULL, NULL, NULL);
1549 :
1550 0 : nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
1551 0 : rc = nvme_transport_ctrlr_scan_attached(probe_ctx);
1552 0 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
1553 0 : free(probe_ctx);
1554 :
1555 0 : return rc < 0 ? rc : 0;
1556 : }
1557 :
1558 : struct spdk_nvme_probe_ctx *
1559 0 : spdk_nvme_probe_async(const struct spdk_nvme_transport_id *trid,
1560 : void *cb_ctx,
1561 : spdk_nvme_probe_cb probe_cb,
1562 : spdk_nvme_attach_cb attach_cb,
1563 : spdk_nvme_remove_cb remove_cb)
1564 : {
1565 0 : return spdk_nvme_probe_async_ext(trid, cb_ctx, probe_cb, attach_cb, NULL, remove_cb);
1566 : }
1567 :
1568 : struct spdk_nvme_probe_ctx *
1569 4 : spdk_nvme_probe_async_ext(const struct spdk_nvme_transport_id *trid,
1570 : void *cb_ctx,
1571 : spdk_nvme_probe_cb probe_cb,
1572 : spdk_nvme_attach_cb attach_cb,
1573 : spdk_nvme_attach_fail_cb attach_fail_cb,
1574 : spdk_nvme_remove_cb remove_cb)
1575 : {
1576 : int rc;
1577 : struct spdk_nvme_probe_ctx *probe_ctx;
1578 :
1579 4 : rc = nvme_driver_init();
1580 4 : if (rc != 0) {
1581 1 : return NULL;
1582 : }
1583 :
1584 3 : probe_ctx = calloc(1, sizeof(*probe_ctx));
1585 3 : if (!probe_ctx) {
1586 0 : return NULL;
1587 : }
1588 :
1589 3 : nvme_probe_ctx_init(probe_ctx, trid, NULL, cb_ctx, probe_cb, attach_cb, attach_fail_cb,
1590 : remove_cb);
1591 3 : rc = nvme_probe_internal(probe_ctx, false);
1592 3 : if (rc != 0) {
1593 1 : free(probe_ctx);
1594 1 : return NULL;
1595 : }
1596 :
1597 2 : return probe_ctx;
1598 : }
1599 :
1600 : int
1601 14 : spdk_nvme_probe_poll_async(struct spdk_nvme_probe_ctx *probe_ctx)
1602 : {
1603 : struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
1604 :
1605 14 : if (!spdk_process_is_primary() && probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1606 7 : free(probe_ctx);
1607 7 : return 0;
1608 : }
1609 :
1610 10 : TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
1611 3 : nvme_ctrlr_poll_internal(ctrlr, probe_ctx);
1612 : }
1613 :
1614 7 : if (TAILQ_EMPTY(&probe_ctx->init_ctrlrs)) {
1615 7 : nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
1616 7 : g_spdk_nvme_driver->initialized = true;
1617 7 : nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
1618 7 : free(probe_ctx);
1619 7 : return 0;
1620 : }
1621 :
1622 0 : return -EAGAIN;
1623 : }
1624 :
1625 : struct spdk_nvme_probe_ctx *
1626 9 : spdk_nvme_connect_async(const struct spdk_nvme_transport_id *trid,
1627 : const struct spdk_nvme_ctrlr_opts *opts,
1628 : spdk_nvme_attach_cb attach_cb)
1629 : {
1630 : int rc;
1631 9 : spdk_nvme_probe_cb probe_cb = NULL;
1632 : struct spdk_nvme_probe_ctx *probe_ctx;
1633 :
1634 9 : rc = nvme_driver_init();
1635 9 : if (rc != 0) {
1636 0 : return NULL;
1637 : }
1638 :
1639 9 : probe_ctx = calloc(1, sizeof(*probe_ctx));
1640 9 : if (!probe_ctx) {
1641 0 : return NULL;
1642 : }
1643 :
1644 9 : if (opts) {
1645 4 : probe_cb = nvme_connect_probe_cb;
1646 : }
1647 :
1648 9 : nvme_probe_ctx_init(probe_ctx, trid, opts, (void *)opts, probe_cb, attach_cb, NULL, NULL);
1649 9 : rc = nvme_probe_internal(probe_ctx, true);
1650 9 : if (rc != 0) {
1651 0 : free(probe_ctx);
1652 0 : return NULL;
1653 : }
1654 :
1655 9 : return probe_ctx;
1656 : }
1657 :
1658 : int
1659 2 : nvme_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service,
1660 : long int *port)
1661 : {
1662 2 : struct addrinfo *res;
1663 2 : struct addrinfo hints;
1664 : int ret;
1665 :
1666 2 : memset(&hints, 0, sizeof(hints));
1667 2 : hints.ai_family = family;
1668 2 : hints.ai_socktype = SOCK_STREAM;
1669 2 : hints.ai_protocol = 0;
1670 :
1671 2 : if (service != NULL) {
1672 1 : *port = spdk_strtol(service, 10);
1673 1 : if (*port <= 0 || *port >= 65536) {
1674 0 : SPDK_ERRLOG("Invalid port: %s\n", service);
1675 0 : return -EINVAL;
1676 : }
1677 : }
1678 :
1679 2 : ret = getaddrinfo(addr, service, &hints, &res);
1680 2 : if (ret) {
1681 1 : SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
1682 1 : return -(abs(ret));
1683 : }
1684 :
1685 1 : if (res->ai_addrlen > sizeof(*sa)) {
1686 0 : SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
1687 0 : ret = -EINVAL;
1688 : } else {
1689 1 : memcpy(sa, res->ai_addr, res->ai_addrlen);
1690 : }
1691 :
1692 1 : freeaddrinfo(res);
1693 1 : return ret;
1694 : }
1695 :
1696 : int
1697 23 : nvme_get_default_hostnqn(char *buf, int len)
1698 : {
1699 23 : char uuid[SPDK_UUID_STRING_LEN];
1700 : int rc;
1701 :
1702 23 : spdk_uuid_fmt_lower(uuid, sizeof(uuid), &g_spdk_nvme_driver->default_extended_host_id);
1703 23 : rc = snprintf(buf, len, "nqn.2014-08.org.nvmexpress:uuid:%s", uuid);
1704 23 : if (rc < 0 || rc >= len) {
1705 0 : return -EINVAL;
1706 : }
1707 :
1708 23 : return 0;
1709 : }
1710 :
1711 3 : SPDK_LOG_REGISTER_COMPONENT(nvme)
|