Line data Source code
1 : /* SPDX-License-Identifier: BSD-3-Clause
2 : * Copyright (C) 2016 Intel Corporation. All rights reserved.
3 : * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4 : * Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5 : */
6 :
7 : /*
8 : * NVMe over RDMA transport
9 : */
10 :
11 : #include "spdk/stdinc.h"
12 :
13 : #include "spdk/assert.h"
14 : #include "spdk/dma.h"
15 : #include "spdk/log.h"
16 : #include "spdk/trace.h"
17 : #include "spdk/queue.h"
18 : #include "spdk/nvme.h"
19 : #include "spdk/nvmf_spec.h"
20 : #include "spdk/string.h"
21 : #include "spdk/endian.h"
22 : #include "spdk/likely.h"
23 : #include "spdk/config.h"
24 :
25 : #include "nvme_internal.h"
26 : #include "spdk_internal/rdma_provider.h"
27 : #include "spdk_internal/rdma_utils.h"
28 :
29 : #define NVME_RDMA_TIME_OUT_IN_MS 2000
30 : #define NVME_RDMA_RW_BUFFER_SIZE 131072
31 :
32 : /*
33 : * NVME RDMA qpair Resource Defaults
34 : */
35 : #define NVME_RDMA_DEFAULT_TX_SGE 2
36 : #define NVME_RDMA_DEFAULT_RX_SGE 1
37 :
38 : /* Max number of NVMe-oF SGL descriptors supported by the host */
39 : #define NVME_RDMA_MAX_SGL_DESCRIPTORS 16
40 :
41 : /* number of STAILQ entries for holding pending RDMA CM events. */
42 : #define NVME_RDMA_NUM_CM_EVENTS 256
43 :
44 : /* The default size for a shared rdma completion queue. */
45 : #define DEFAULT_NVME_RDMA_CQ_SIZE 4096
46 :
47 : /*
48 : * In the special case of a stale connection we don't expose a mechanism
49 : * for the user to retry the connection so we need to handle it internally.
50 : */
51 : #define NVME_RDMA_STALE_CONN_RETRY_MAX 5
52 : #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US 10000
53 :
54 : /*
55 : * Maximum value of transport_retry_count used by RDMA controller
56 : */
57 : #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT 7
58 :
59 : /*
60 : * Maximum value of transport_ack_timeout used by RDMA controller
61 : */
62 : #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31
63 :
64 : /*
65 : * Number of microseconds to wait until the lingering qpair becomes quiet.
66 : */
67 : #define NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US 1000000ull
68 :
69 : /*
70 : * The max length of keyed SGL data block (3 bytes)
71 : */
72 : #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1)
73 :
74 : #define WC_PER_QPAIR(queue_depth) (queue_depth * 2)
75 :
76 : #define NVME_RDMA_POLL_GROUP_CHECK_QPN(_rqpair, qpn) \
77 : ((_rqpair)->rdma_qp && (_rqpair)->rdma_qp->qp->qp_num == (qpn)) \
78 :
79 : enum nvme_rdma_wr_type {
80 : RDMA_WR_TYPE_RECV,
81 : RDMA_WR_TYPE_SEND,
82 : };
83 :
84 : struct nvme_rdma_wr {
85 : /* Using this instead of the enum allows this struct to only occupy one byte. */
86 : uint8_t type;
87 : };
88 :
89 : struct spdk_nvmf_cmd {
90 : struct spdk_nvme_cmd cmd;
91 : struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
92 : };
93 :
94 : struct spdk_nvme_rdma_hooks g_nvme_hooks = {};
95 :
96 : /* STAILQ wrapper for cm events. */
97 : struct nvme_rdma_cm_event_entry {
98 : struct rdma_cm_event *evt;
99 : STAILQ_ENTRY(nvme_rdma_cm_event_entry) link;
100 : };
101 :
102 : /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
103 : struct nvme_rdma_ctrlr {
104 : struct spdk_nvme_ctrlr ctrlr;
105 :
106 : uint16_t max_sge;
107 :
108 : struct rdma_event_channel *cm_channel;
109 :
110 : STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events;
111 :
112 : STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events;
113 :
114 : struct nvme_rdma_cm_event_entry *cm_events;
115 : };
116 :
117 : struct nvme_rdma_poller_stats {
118 : uint64_t polls;
119 : uint64_t idle_polls;
120 : uint64_t queued_requests;
121 : uint64_t completions;
122 : struct spdk_rdma_provider_qp_stats rdma_stats;
123 : };
124 :
125 : struct nvme_rdma_poll_group;
126 : struct nvme_rdma_rsps;
127 :
128 : struct nvme_rdma_poller {
129 : struct ibv_context *device;
130 : struct ibv_cq *cq;
131 : struct spdk_rdma_provider_srq *srq;
132 : struct nvme_rdma_rsps *rsps;
133 : struct ibv_pd *pd;
134 : struct spdk_rdma_utils_mem_map *mr_map;
135 : uint32_t refcnt;
136 : int required_num_wc;
137 : int current_num_wc;
138 : struct nvme_rdma_poller_stats stats;
139 : struct nvme_rdma_poll_group *group;
140 : STAILQ_ENTRY(nvme_rdma_poller) link;
141 : };
142 :
143 : struct nvme_rdma_qpair;
144 :
145 : struct nvme_rdma_poll_group {
146 : struct spdk_nvme_transport_poll_group group;
147 : STAILQ_HEAD(, nvme_rdma_poller) pollers;
148 : uint32_t num_pollers;
149 : TAILQ_HEAD(, nvme_rdma_qpair) connecting_qpairs;
150 : TAILQ_HEAD(, nvme_rdma_qpair) active_qpairs;
151 : };
152 :
153 : enum nvme_rdma_qpair_state {
154 : NVME_RDMA_QPAIR_STATE_INVALID = 0,
155 : NVME_RDMA_QPAIR_STATE_STALE_CONN,
156 : NVME_RDMA_QPAIR_STATE_INITIALIZING,
157 : NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND,
158 : NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL,
159 : NVME_RDMA_QPAIR_STATE_RUNNING,
160 : NVME_RDMA_QPAIR_STATE_EXITING,
161 : NVME_RDMA_QPAIR_STATE_LINGERING,
162 : NVME_RDMA_QPAIR_STATE_EXITED,
163 : };
164 :
165 : typedef int (*nvme_rdma_cm_event_cb)(struct nvme_rdma_qpair *rqpair, int ret);
166 :
167 : struct nvme_rdma_rsp_opts {
168 : uint16_t num_entries;
169 : struct nvme_rdma_qpair *rqpair;
170 : struct spdk_rdma_provider_srq *srq;
171 : struct spdk_rdma_utils_mem_map *mr_map;
172 : };
173 :
174 : struct nvme_rdma_rsps {
175 : /* Parallel arrays of response buffers + response SGLs of size num_entries */
176 : struct ibv_sge *rsp_sgls;
177 : struct spdk_nvme_rdma_rsp *rsps;
178 :
179 : struct ibv_recv_wr *rsp_recv_wrs;
180 :
181 : /* Count of outstanding recv objects */
182 : uint16_t current_num_recvs;
183 :
184 : uint16_t num_entries;
185 : };
186 :
187 : /* NVMe RDMA qpair extensions for spdk_nvme_qpair */
188 : struct nvme_rdma_qpair {
189 : struct spdk_nvme_qpair qpair;
190 :
191 : struct spdk_rdma_provider_qp *rdma_qp;
192 : struct rdma_cm_id *cm_id;
193 : struct ibv_cq *cq;
194 : struct spdk_rdma_provider_srq *srq;
195 :
196 : struct spdk_nvme_rdma_req *rdma_reqs;
197 :
198 : uint32_t max_send_sge;
199 :
200 : uint32_t max_recv_sge;
201 :
202 : uint16_t num_entries;
203 :
204 : bool delay_cmd_submit;
205 :
206 : uint32_t num_completions;
207 : uint32_t num_outstanding_reqs;
208 :
209 : struct nvme_rdma_rsps *rsps;
210 :
211 : /*
212 : * Array of num_entries NVMe commands registered as RDMA message buffers.
213 : * Indexed by rdma_req->id.
214 : */
215 : struct spdk_nvmf_cmd *cmds;
216 :
217 : struct spdk_rdma_utils_mem_map *mr_map;
218 :
219 : TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs;
220 : TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs;
221 :
222 : struct spdk_memory_domain *memory_domain;
223 :
224 : /* Count of outstanding send objects */
225 : uint16_t current_num_sends;
226 :
227 : TAILQ_ENTRY(nvme_rdma_qpair) link_active;
228 :
229 : /* Placed at the end of the struct since it is not used frequently */
230 : struct rdma_cm_event *evt;
231 : struct nvme_rdma_poller *poller;
232 :
233 : uint64_t evt_timeout_ticks;
234 : nvme_rdma_cm_event_cb evt_cb;
235 : enum rdma_cm_event_type expected_evt_type;
236 :
237 : enum nvme_rdma_qpair_state state;
238 :
239 : bool in_connect_poll;
240 :
241 : uint8_t stale_conn_retry_count;
242 : bool need_destroy;
243 :
244 : TAILQ_ENTRY(nvme_rdma_qpair) link_connecting;
245 : };
246 :
247 : enum NVME_RDMA_COMPLETION_FLAGS {
248 : NVME_RDMA_SEND_COMPLETED = 1u << 0,
249 : NVME_RDMA_RECV_COMPLETED = 1u << 1,
250 : };
251 :
252 : struct spdk_nvme_rdma_req {
253 : uint16_t id;
254 : uint16_t completion_flags: 2;
255 : uint16_t reserved: 14;
256 : /* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request
257 : * during processing of RDMA_SEND. To complete the request we must know the response
258 : * received in RDMA_RECV, so store it in this field */
259 : struct spdk_nvme_rdma_rsp *rdma_rsp;
260 :
261 : struct nvme_rdma_wr rdma_wr;
262 :
263 : struct ibv_send_wr send_wr;
264 :
265 : struct nvme_request *req;
266 :
267 : struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
268 :
269 : TAILQ_ENTRY(spdk_nvme_rdma_req) link;
270 : };
271 :
272 : struct spdk_nvme_rdma_rsp {
273 : struct spdk_nvme_cpl cpl;
274 : struct nvme_rdma_qpair *rqpair;
275 : struct ibv_recv_wr *recv_wr;
276 : struct nvme_rdma_wr rdma_wr;
277 : };
278 :
279 : struct nvme_rdma_memory_translation_ctx {
280 : void *addr;
281 : size_t length;
282 : uint32_t lkey;
283 : uint32_t rkey;
284 : };
285 :
286 : static const char *rdma_cm_event_str[] = {
287 : "RDMA_CM_EVENT_ADDR_RESOLVED",
288 : "RDMA_CM_EVENT_ADDR_ERROR",
289 : "RDMA_CM_EVENT_ROUTE_RESOLVED",
290 : "RDMA_CM_EVENT_ROUTE_ERROR",
291 : "RDMA_CM_EVENT_CONNECT_REQUEST",
292 : "RDMA_CM_EVENT_CONNECT_RESPONSE",
293 : "RDMA_CM_EVENT_CONNECT_ERROR",
294 : "RDMA_CM_EVENT_UNREACHABLE",
295 : "RDMA_CM_EVENT_REJECTED",
296 : "RDMA_CM_EVENT_ESTABLISHED",
297 : "RDMA_CM_EVENT_DISCONNECTED",
298 : "RDMA_CM_EVENT_DEVICE_REMOVAL",
299 : "RDMA_CM_EVENT_MULTICAST_JOIN",
300 : "RDMA_CM_EVENT_MULTICAST_ERROR",
301 : "RDMA_CM_EVENT_ADDR_CHANGE",
302 : "RDMA_CM_EVENT_TIMEWAIT_EXIT"
303 : };
304 :
305 : static struct nvme_rdma_poller *nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group,
306 : struct ibv_context *device);
307 : static void nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group,
308 : struct nvme_rdma_poller *poller);
309 :
310 : static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
311 : struct spdk_nvme_qpair *qpair);
312 :
313 : static inline struct nvme_rdma_qpair *
314 18 : nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
315 : {
316 18 : assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
317 18 : return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
318 : }
319 :
320 : static inline struct nvme_rdma_poll_group *
321 8 : nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group)
322 : {
323 8 : return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group));
324 : }
325 :
326 : static inline struct nvme_rdma_ctrlr *
327 8 : nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
328 : {
329 8 : assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
330 8 : return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
331 : }
332 :
333 : static struct spdk_nvme_rdma_req *
334 3 : nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
335 : {
336 : struct spdk_nvme_rdma_req *rdma_req;
337 :
338 3 : rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
339 3 : if (rdma_req) {
340 2 : TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
341 : }
342 :
343 3 : return rdma_req;
344 : }
345 :
346 : static void
347 1 : nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
348 : {
349 1 : rdma_req->completion_flags = 0;
350 1 : rdma_req->req = NULL;
351 1 : rdma_req->rdma_rsp = NULL;
352 1 : TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
353 1 : }
354 :
355 : static void
356 0 : nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req,
357 : struct spdk_nvme_cpl *rsp,
358 : bool print_on_error)
359 : {
360 0 : struct nvme_request *req = rdma_req->req;
361 : struct nvme_rdma_qpair *rqpair;
362 : struct spdk_nvme_qpair *qpair;
363 : bool error, print_error;
364 :
365 0 : assert(req != NULL);
366 :
367 0 : qpair = req->qpair;
368 0 : rqpair = nvme_rdma_qpair(qpair);
369 :
370 0 : error = spdk_nvme_cpl_is_error(rsp);
371 0 : print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging;
372 :
373 0 : if (print_error) {
374 0 : spdk_nvme_qpair_print_command(qpair, &req->cmd);
375 : }
376 :
377 0 : if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) {
378 0 : spdk_nvme_qpair_print_completion(qpair, rsp);
379 : }
380 :
381 0 : assert(rqpair->num_outstanding_reqs > 0);
382 0 : rqpair->num_outstanding_reqs--;
383 :
384 0 : TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
385 :
386 0 : nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, rsp);
387 0 : nvme_rdma_req_put(rqpair, rdma_req);
388 0 : }
389 :
390 : static const char *
391 4 : nvme_rdma_cm_event_str_get(uint32_t event)
392 : {
393 4 : if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
394 4 : return rdma_cm_event_str[event];
395 : } else {
396 0 : return "Undefined";
397 : }
398 : }
399 :
400 :
401 : static int
402 12 : nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair)
403 : {
404 12 : struct rdma_cm_event *event = rqpair->evt;
405 : struct spdk_nvmf_rdma_accept_private_data *accept_data;
406 12 : int rc = 0;
407 :
408 12 : if (event) {
409 12 : switch (event->event) {
410 1 : case RDMA_CM_EVENT_ADDR_RESOLVED:
411 : case RDMA_CM_EVENT_ADDR_ERROR:
412 : case RDMA_CM_EVENT_ROUTE_RESOLVED:
413 : case RDMA_CM_EVENT_ROUTE_ERROR:
414 1 : break;
415 1 : case RDMA_CM_EVENT_CONNECT_REQUEST:
416 1 : break;
417 1 : case RDMA_CM_EVENT_CONNECT_ERROR:
418 1 : break;
419 1 : case RDMA_CM_EVENT_UNREACHABLE:
420 : case RDMA_CM_EVENT_REJECTED:
421 1 : break;
422 2 : case RDMA_CM_EVENT_CONNECT_RESPONSE:
423 2 : rc = spdk_rdma_provider_qp_complete_connect(rqpair->rdma_qp);
424 : /* fall through */
425 2 : case RDMA_CM_EVENT_ESTABLISHED:
426 2 : accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
427 2 : if (accept_data == NULL) {
428 1 : rc = -1;
429 : } else {
430 1 : SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Target receive queue depth %d.\n",
431 : rqpair->num_entries + 1, accept_data->crqsize);
432 : }
433 2 : break;
434 1 : case RDMA_CM_EVENT_DISCONNECTED:
435 1 : rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
436 1 : break;
437 1 : case RDMA_CM_EVENT_DEVICE_REMOVAL:
438 1 : rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
439 1 : rqpair->need_destroy = true;
440 1 : break;
441 1 : case RDMA_CM_EVENT_MULTICAST_JOIN:
442 : case RDMA_CM_EVENT_MULTICAST_ERROR:
443 1 : break;
444 1 : case RDMA_CM_EVENT_ADDR_CHANGE:
445 1 : rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
446 1 : break;
447 1 : case RDMA_CM_EVENT_TIMEWAIT_EXIT:
448 1 : break;
449 1 : default:
450 1 : SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
451 1 : break;
452 : }
453 12 : rqpair->evt = NULL;
454 12 : rdma_ack_cm_event(event);
455 : }
456 :
457 12 : return rc;
458 : }
459 :
460 : /*
461 : * This function must be called under the nvme controller's lock
462 : * because it touches global controller variables. The lock is taken
463 : * by the generic transport code before invoking a few of the functions
464 : * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair,
465 : * and conditionally nvme_rdma_qpair_process_completions when it is calling
466 : * completions on the admin qpair. When adding a new call to this function, please
467 : * verify that it is in a situation where it falls under the lock.
468 : */
469 : static int
470 0 : nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr)
471 : {
472 : struct nvme_rdma_cm_event_entry *entry, *tmp;
473 : struct nvme_rdma_qpair *event_qpair;
474 0 : struct rdma_cm_event *event;
475 0 : struct rdma_event_channel *channel = rctrlr->cm_channel;
476 :
477 0 : STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
478 0 : event_qpair = entry->evt->id->context;
479 0 : if (event_qpair->evt == NULL) {
480 0 : event_qpair->evt = entry->evt;
481 0 : STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
482 0 : STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
483 : }
484 : }
485 :
486 0 : while (rdma_get_cm_event(channel, &event) == 0) {
487 0 : event_qpair = event->id->context;
488 0 : if (event_qpair->evt == NULL) {
489 0 : event_qpair->evt = event;
490 : } else {
491 0 : assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr));
492 0 : entry = STAILQ_FIRST(&rctrlr->free_cm_events);
493 0 : if (entry == NULL) {
494 0 : rdma_ack_cm_event(event);
495 0 : return -ENOMEM;
496 : }
497 0 : STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link);
498 0 : entry->evt = event;
499 0 : STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link);
500 : }
501 : }
502 :
503 : /* rdma_get_cm_event() returns -1 on error. If an error occurs, errno
504 : * will be set to indicate the failure reason. So return negated errno here.
505 : */
506 0 : return -errno;
507 : }
508 :
509 : static int
510 4 : nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type,
511 : struct rdma_cm_event *reaped_evt)
512 : {
513 4 : int rc = -EBADMSG;
514 :
515 4 : if (expected_evt_type == reaped_evt->event) {
516 1 : return 0;
517 : }
518 :
519 3 : switch (expected_evt_type) {
520 2 : case RDMA_CM_EVENT_ESTABLISHED:
521 : /*
522 : * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as
523 : * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get
524 : * the same values here.
525 : */
526 2 : if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) {
527 1 : rc = -ESTALE;
528 1 : } else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) {
529 : /*
530 : * If we are using a qpair which is not created using rdma cm API
531 : * then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of
532 : * RDMA_CM_EVENT_ESTABLISHED.
533 : */
534 1 : return 0;
535 : }
536 1 : break;
537 1 : default:
538 1 : break;
539 : }
540 :
541 2 : SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
542 : nvme_rdma_cm_event_str_get(expected_evt_type),
543 : nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event,
544 : reaped_evt->status);
545 2 : return rc;
546 : }
547 :
548 : static int
549 0 : nvme_rdma_process_event_start(struct nvme_rdma_qpair *rqpair,
550 : enum rdma_cm_event_type evt,
551 : nvme_rdma_cm_event_cb evt_cb)
552 : {
553 : int rc;
554 :
555 0 : assert(evt_cb != NULL);
556 :
557 0 : if (rqpair->evt != NULL) {
558 0 : rc = nvme_rdma_qpair_process_cm_event(rqpair);
559 0 : if (rc) {
560 0 : return rc;
561 : }
562 : }
563 :
564 0 : rqpair->expected_evt_type = evt;
565 0 : rqpair->evt_cb = evt_cb;
566 0 : rqpair->evt_timeout_ticks = (g_spdk_nvme_transport_opts.rdma_cm_event_timeout_ms * 1000 *
567 0 : spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC + spdk_get_ticks();
568 :
569 0 : return 0;
570 : }
571 :
572 : static int
573 0 : nvme_rdma_process_event_poll(struct nvme_rdma_qpair *rqpair)
574 : {
575 : struct nvme_rdma_ctrlr *rctrlr;
576 0 : int rc = 0, rc2;
577 :
578 0 : rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
579 0 : assert(rctrlr != NULL);
580 :
581 0 : if (!rqpair->evt && spdk_get_ticks() < rqpair->evt_timeout_ticks) {
582 0 : rc = nvme_rdma_poll_events(rctrlr);
583 0 : if (rc == -EAGAIN || rc == -EWOULDBLOCK) {
584 0 : return rc;
585 : }
586 : }
587 :
588 0 : if (rqpair->evt == NULL) {
589 0 : rc = -EADDRNOTAVAIL;
590 0 : goto exit;
591 : }
592 :
593 0 : rc = nvme_rdma_validate_cm_event(rqpair->expected_evt_type, rqpair->evt);
594 :
595 0 : rc2 = nvme_rdma_qpair_process_cm_event(rqpair);
596 : /* bad message takes precedence over the other error codes from processing the event. */
597 0 : rc = rc == 0 ? rc2 : rc;
598 :
599 0 : exit:
600 0 : assert(rqpair->evt_cb != NULL);
601 0 : return rqpair->evt_cb(rqpair, rc);
602 : }
603 :
604 : static int
605 3 : nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller)
606 : {
607 : int current_num_wc, required_num_wc;
608 : int max_cq_size;
609 :
610 3 : required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries);
611 3 : current_num_wc = poller->current_num_wc;
612 3 : if (current_num_wc < required_num_wc) {
613 2 : current_num_wc = spdk_max(current_num_wc * 2, required_num_wc);
614 : }
615 :
616 3 : max_cq_size = g_spdk_nvme_transport_opts.rdma_max_cq_size;
617 3 : if (max_cq_size != 0 && current_num_wc > max_cq_size) {
618 0 : current_num_wc = max_cq_size;
619 : }
620 :
621 3 : if (poller->current_num_wc != current_num_wc) {
622 2 : SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc,
623 : current_num_wc);
624 2 : if (ibv_resize_cq(poller->cq, current_num_wc)) {
625 1 : SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
626 1 : return -1;
627 : }
628 :
629 1 : poller->current_num_wc = current_num_wc;
630 : }
631 :
632 2 : poller->required_num_wc = required_num_wc;
633 2 : return 0;
634 : }
635 :
636 : static int
637 5 : nvme_rdma_qpair_set_poller(struct spdk_nvme_qpair *qpair)
638 : {
639 5 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
640 5 : struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
641 : struct nvme_rdma_poller *poller;
642 :
643 5 : assert(rqpair->cq == NULL);
644 :
645 5 : poller = nvme_rdma_poll_group_get_poller(group, rqpair->cm_id->verbs);
646 5 : if (!poller) {
647 2 : SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group);
648 2 : return -EINVAL;
649 : }
650 :
651 3 : if (!poller->srq) {
652 3 : if (nvme_rdma_resize_cq(rqpair, poller)) {
653 1 : nvme_rdma_poll_group_put_poller(group, poller);
654 1 : return -EPROTO;
655 : }
656 : }
657 :
658 2 : rqpair->cq = poller->cq;
659 2 : rqpair->srq = poller->srq;
660 2 : if (rqpair->srq) {
661 0 : rqpair->rsps = poller->rsps;
662 : }
663 2 : rqpair->poller = poller;
664 2 : return 0;
665 : }
666 :
667 : static int
668 1 : nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
669 : {
670 : int rc;
671 1 : struct spdk_rdma_provider_qp_init_attr attr = {};
672 1 : struct ibv_device_attr dev_attr;
673 : struct nvme_rdma_ctrlr *rctrlr;
674 : uint32_t num_cqe, max_num_cqe;
675 :
676 1 : rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr);
677 1 : if (rc != 0) {
678 0 : SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
679 0 : return -1;
680 : }
681 :
682 1 : if (rqpair->qpair.poll_group) {
683 0 : assert(!rqpair->cq);
684 0 : rc = nvme_rdma_qpair_set_poller(&rqpair->qpair);
685 0 : if (rc) {
686 0 : SPDK_ERRLOG("Unable to activate the rdmaqpair.\n");
687 0 : return -1;
688 : }
689 0 : assert(rqpair->cq);
690 : } else {
691 1 : num_cqe = rqpair->num_entries * 2;
692 1 : max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size;
693 1 : if (max_num_cqe != 0 && num_cqe > max_num_cqe) {
694 0 : num_cqe = max_num_cqe;
695 : }
696 1 : rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, num_cqe, rqpair, NULL, 0);
697 1 : if (!rqpair->cq) {
698 0 : SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
699 0 : return -1;
700 : }
701 : }
702 :
703 1 : rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
704 1 : if (g_nvme_hooks.get_ibv_pd) {
705 0 : attr.pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs);
706 : } else {
707 1 : attr.pd = spdk_rdma_utils_get_pd(rqpair->cm_id->verbs);
708 : }
709 :
710 1 : attr.stats = rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL;
711 1 : attr.send_cq = rqpair->cq;
712 1 : attr.recv_cq = rqpair->cq;
713 1 : attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */
714 1 : if (rqpair->srq) {
715 0 : attr.srq = rqpair->srq->srq;
716 : } else {
717 1 : attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */
718 : }
719 1 : attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge);
720 1 : attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge);
721 :
722 1 : rqpair->rdma_qp = spdk_rdma_provider_qp_create(rqpair->cm_id, &attr);
723 :
724 1 : if (!rqpair->rdma_qp) {
725 0 : return -1;
726 : }
727 :
728 1 : rqpair->memory_domain = spdk_rdma_utils_get_memory_domain(rqpair->rdma_qp->qp->pd);
729 1 : if (!rqpair->memory_domain) {
730 0 : SPDK_ERRLOG("Failed to get memory domain\n");
731 0 : return -1;
732 : }
733 :
734 : /* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */
735 1 : rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge);
736 1 : rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge);
737 1 : rqpair->current_num_sends = 0;
738 :
739 1 : rqpair->cm_id->context = rqpair;
740 :
741 1 : return 0;
742 : }
743 :
744 : static void
745 0 : nvme_rdma_reset_failed_sends(struct nvme_rdma_qpair *rqpair,
746 : struct ibv_send_wr *bad_send_wr, int rc)
747 : {
748 0 : SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n",
749 : rc, spdk_strerror(rc), bad_send_wr);
750 0 : while (bad_send_wr != NULL) {
751 0 : assert(rqpair->current_num_sends > 0);
752 0 : rqpair->current_num_sends--;
753 0 : bad_send_wr = bad_send_wr->next;
754 : }
755 0 : }
756 :
757 : static void
758 0 : nvme_rdma_reset_failed_recvs(struct nvme_rdma_rsps *rsps,
759 : struct ibv_recv_wr *bad_recv_wr, int rc)
760 : {
761 0 : SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n",
762 : rc, spdk_strerror(rc), bad_recv_wr);
763 0 : while (bad_recv_wr != NULL) {
764 0 : assert(rsps->current_num_recvs > 0);
765 0 : rsps->current_num_recvs--;
766 0 : bad_recv_wr = bad_recv_wr->next;
767 : }
768 0 : }
769 :
770 : static inline int
771 1 : nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair)
772 : {
773 1 : struct ibv_send_wr *bad_send_wr = NULL;
774 : int rc;
775 :
776 1 : rc = spdk_rdma_provider_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr);
777 :
778 1 : if (spdk_unlikely(rc)) {
779 0 : nvme_rdma_reset_failed_sends(rqpair, bad_send_wr, rc);
780 : }
781 :
782 1 : return rc;
783 : }
784 :
785 : static inline int
786 0 : nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair)
787 : {
788 0 : struct ibv_recv_wr *bad_recv_wr;
789 0 : int rc = 0;
790 :
791 0 : rc = spdk_rdma_provider_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
792 0 : if (spdk_unlikely(rc)) {
793 0 : nvme_rdma_reset_failed_recvs(rqpair->rsps, bad_recv_wr, rc);
794 : }
795 :
796 0 : return rc;
797 : }
798 :
799 : static inline int
800 0 : nvme_rdma_poller_submit_recvs(struct nvme_rdma_poller *poller)
801 : {
802 0 : struct ibv_recv_wr *bad_recv_wr;
803 : int rc;
804 :
805 0 : rc = spdk_rdma_provider_srq_flush_recv_wrs(poller->srq, &bad_recv_wr);
806 0 : if (spdk_unlikely(rc)) {
807 0 : nvme_rdma_reset_failed_recvs(poller->rsps, bad_recv_wr, rc);
808 : }
809 :
810 0 : return rc;
811 : }
812 :
813 : #define nvme_rdma_trace_ibv_sge(sg_list) \
814 : if (sg_list) { \
815 : SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \
816 : (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
817 : }
818 :
819 : static void
820 3 : nvme_rdma_free_rsps(struct nvme_rdma_rsps *rsps)
821 : {
822 3 : if (!rsps) {
823 1 : return;
824 : }
825 :
826 2 : spdk_free(rsps->rsps);
827 2 : spdk_free(rsps->rsp_sgls);
828 2 : spdk_free(rsps->rsp_recv_wrs);
829 2 : spdk_free(rsps);
830 : }
831 :
832 : static struct nvme_rdma_rsps *
833 2 : nvme_rdma_create_rsps(struct nvme_rdma_rsp_opts *opts)
834 : {
835 : struct nvme_rdma_rsps *rsps;
836 2 : struct spdk_rdma_utils_memory_translation translation;
837 : uint16_t i;
838 : int rc;
839 :
840 2 : rsps = spdk_zmalloc(sizeof(*rsps), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
841 2 : if (!rsps) {
842 0 : SPDK_ERRLOG("Failed to allocate rsps object\n");
843 0 : return NULL;
844 : }
845 :
846 2 : rsps->rsp_sgls = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_sgls), 0, NULL,
847 : SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
848 2 : if (!rsps->rsp_sgls) {
849 1 : SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
850 1 : goto fail;
851 : }
852 :
853 1 : rsps->rsp_recv_wrs = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_recv_wrs), 0, NULL,
854 : SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
855 1 : if (!rsps->rsp_recv_wrs) {
856 0 : SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
857 0 : goto fail;
858 : }
859 :
860 1 : rsps->rsps = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsps), 0, NULL,
861 : SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
862 1 : if (!rsps->rsps) {
863 0 : SPDK_ERRLOG("can not allocate rdma rsps\n");
864 0 : goto fail;
865 : }
866 :
867 2 : for (i = 0; i < opts->num_entries; i++) {
868 1 : struct ibv_sge *rsp_sgl = &rsps->rsp_sgls[i];
869 1 : struct spdk_nvme_rdma_rsp *rsp = &rsps->rsps[i];
870 1 : struct ibv_recv_wr *recv_wr = &rsps->rsp_recv_wrs[i];
871 :
872 1 : rsp->rqpair = opts->rqpair;
873 1 : rsp->rdma_wr.type = RDMA_WR_TYPE_RECV;
874 1 : rsp->recv_wr = recv_wr;
875 1 : rsp_sgl->addr = (uint64_t)rsp;
876 1 : rsp_sgl->length = sizeof(struct spdk_nvme_cpl);
877 1 : rc = spdk_rdma_utils_get_translation(opts->mr_map, rsp, sizeof(*rsp), &translation);
878 1 : if (rc) {
879 0 : goto fail;
880 : }
881 1 : rsp_sgl->lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
882 :
883 1 : recv_wr->wr_id = (uint64_t)&rsp->rdma_wr;
884 1 : recv_wr->next = NULL;
885 1 : recv_wr->sg_list = rsp_sgl;
886 1 : recv_wr->num_sge = 1;
887 :
888 1 : nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
889 :
890 1 : if (opts->rqpair) {
891 1 : spdk_rdma_provider_qp_queue_recv_wrs(opts->rqpair->rdma_qp, recv_wr);
892 : } else {
893 0 : spdk_rdma_provider_srq_queue_recv_wrs(opts->srq, recv_wr);
894 : }
895 : }
896 :
897 1 : rsps->num_entries = opts->num_entries;
898 1 : rsps->current_num_recvs = opts->num_entries;
899 :
900 1 : return rsps;
901 1 : fail:
902 1 : nvme_rdma_free_rsps(rsps);
903 1 : return NULL;
904 : }
905 :
906 : static void
907 3 : nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
908 : {
909 3 : if (!rqpair->rdma_reqs) {
910 2 : return;
911 : }
912 :
913 1 : spdk_free(rqpair->cmds);
914 1 : rqpair->cmds = NULL;
915 :
916 1 : spdk_free(rqpair->rdma_reqs);
917 1 : rqpair->rdma_reqs = NULL;
918 : }
919 :
920 : static int
921 4 : nvme_rdma_create_reqs(struct nvme_rdma_qpair *rqpair)
922 : {
923 4 : struct spdk_rdma_utils_memory_translation translation;
924 : uint16_t i;
925 : int rc;
926 :
927 4 : assert(!rqpair->rdma_reqs);
928 4 : rqpair->rdma_reqs = spdk_zmalloc(rqpair->num_entries * sizeof(struct spdk_nvme_rdma_req), 0, NULL,
929 : SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
930 4 : if (rqpair->rdma_reqs == NULL) {
931 1 : SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
932 1 : goto fail;
933 : }
934 :
935 3 : assert(!rqpair->cmds);
936 3 : rqpair->cmds = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->cmds), 0, NULL,
937 : SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
938 3 : if (!rqpair->cmds) {
939 0 : SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
940 0 : goto fail;
941 : }
942 :
943 3 : TAILQ_INIT(&rqpair->free_reqs);
944 3 : TAILQ_INIT(&rqpair->outstanding_reqs);
945 10 : for (i = 0; i < rqpair->num_entries; i++) {
946 : struct spdk_nvme_rdma_req *rdma_req;
947 : struct spdk_nvmf_cmd *cmd;
948 :
949 7 : rdma_req = &rqpair->rdma_reqs[i];
950 7 : rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND;
951 7 : cmd = &rqpair->cmds[i];
952 :
953 7 : rdma_req->id = i;
954 :
955 7 : rc = spdk_rdma_utils_get_translation(rqpair->mr_map, cmd, sizeof(*cmd), &translation);
956 7 : if (rc) {
957 0 : goto fail;
958 : }
959 7 : rdma_req->send_sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
960 :
961 : /* The first RDMA sgl element will always point
962 : * at this data structure. Depending on whether
963 : * an NVMe-oF SGL is required, the length of
964 : * this element may change. */
965 7 : rdma_req->send_sgl[0].addr = (uint64_t)cmd;
966 7 : rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr;
967 7 : rdma_req->send_wr.next = NULL;
968 7 : rdma_req->send_wr.opcode = IBV_WR_SEND;
969 7 : rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
970 7 : rdma_req->send_wr.sg_list = rdma_req->send_sgl;
971 7 : rdma_req->send_wr.imm_data = 0;
972 :
973 7 : TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
974 : }
975 :
976 3 : return 0;
977 1 : fail:
978 1 : nvme_rdma_free_reqs(rqpair);
979 1 : return -ENOMEM;
980 : }
981 :
982 : static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair);
983 :
984 : static int
985 0 : nvme_rdma_route_resolved(struct nvme_rdma_qpair *rqpair, int ret)
986 : {
987 0 : if (ret) {
988 0 : SPDK_ERRLOG("RDMA route resolution error\n");
989 0 : return -1;
990 : }
991 :
992 0 : ret = nvme_rdma_qpair_init(rqpair);
993 0 : if (ret < 0) {
994 0 : SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
995 0 : return -1;
996 : }
997 :
998 0 : return nvme_rdma_connect(rqpair);
999 : }
1000 :
1001 : static int
1002 0 : nvme_rdma_addr_resolved(struct nvme_rdma_qpair *rqpair, int ret)
1003 : {
1004 0 : if (ret) {
1005 0 : SPDK_ERRLOG("RDMA address resolution error\n");
1006 0 : return -1;
1007 : }
1008 :
1009 0 : if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) {
1010 : #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT
1011 0 : uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout;
1012 0 : ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID,
1013 : RDMA_OPTION_ID_ACK_TIMEOUT,
1014 : &timeout, sizeof(timeout));
1015 0 : if (ret) {
1016 0 : SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret);
1017 : }
1018 : #else
1019 : SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n");
1020 : #endif
1021 : }
1022 :
1023 0 : if (rqpair->qpair.ctrlr->opts.transport_tos != SPDK_NVME_TRANSPORT_TOS_DISABLED) {
1024 : #ifdef SPDK_CONFIG_RDMA_SET_TOS
1025 0 : uint8_t tos = rqpair->qpair.ctrlr->opts.transport_tos;
1026 0 : ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_TOS, &tos, sizeof(tos));
1027 0 : if (ret) {
1028 0 : SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_TOS %u, ret %d\n", tos, ret);
1029 : }
1030 : #else
1031 : SPDK_DEBUGLOG(nvme, "transport_tos is not supported\n");
1032 : #endif
1033 : }
1034 :
1035 0 : ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
1036 0 : if (ret) {
1037 0 : SPDK_ERRLOG("rdma_resolve_route\n");
1038 0 : return ret;
1039 : }
1040 :
1041 0 : return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ROUTE_RESOLVED,
1042 : nvme_rdma_route_resolved);
1043 : }
1044 :
1045 : static int
1046 0 : nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
1047 : struct sockaddr *src_addr,
1048 : struct sockaddr *dst_addr)
1049 : {
1050 : int ret;
1051 :
1052 0 : if (src_addr) {
1053 0 : int reuse = 1;
1054 :
1055 0 : ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
1056 : &reuse, sizeof(reuse));
1057 0 : if (ret) {
1058 0 : SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_REUSEADDR %d, ret %d\n",
1059 : reuse, ret);
1060 : /* It is likely that rdma_resolve_addr() returns -EADDRINUSE, but
1061 : * we may missing something. We rely on rdma_resolve_addr().
1062 : */
1063 : }
1064 : }
1065 :
1066 0 : ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
1067 : NVME_RDMA_TIME_OUT_IN_MS);
1068 0 : if (ret) {
1069 0 : SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
1070 0 : return ret;
1071 : }
1072 :
1073 0 : return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ADDR_RESOLVED,
1074 : nvme_rdma_addr_resolved);
1075 : }
1076 :
1077 : static int nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair);
1078 :
1079 : static int
1080 0 : nvme_rdma_connect_established(struct nvme_rdma_qpair *rqpair, int ret)
1081 : {
1082 0 : struct nvme_rdma_rsp_opts opts = {};
1083 :
1084 0 : if (ret == -ESTALE) {
1085 0 : return nvme_rdma_stale_conn_retry(rqpair);
1086 0 : } else if (ret) {
1087 0 : SPDK_ERRLOG("RDMA connect error %d\n", ret);
1088 0 : return ret;
1089 : }
1090 :
1091 0 : assert(!rqpair->mr_map);
1092 0 : rqpair->mr_map = spdk_rdma_utils_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks,
1093 : IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE);
1094 0 : if (!rqpair->mr_map) {
1095 0 : SPDK_ERRLOG("Unable to register RDMA memory translation map\n");
1096 0 : return -1;
1097 : }
1098 :
1099 0 : ret = nvme_rdma_create_reqs(rqpair);
1100 0 : SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1101 0 : if (ret) {
1102 0 : SPDK_ERRLOG("Unable to create rqpair RDMA requests\n");
1103 0 : return -1;
1104 : }
1105 0 : SPDK_DEBUGLOG(nvme, "RDMA requests created\n");
1106 :
1107 0 : if (!rqpair->srq) {
1108 0 : opts.num_entries = rqpair->num_entries;
1109 0 : opts.rqpair = rqpair;
1110 0 : opts.srq = NULL;
1111 0 : opts.mr_map = rqpair->mr_map;
1112 :
1113 0 : assert(!rqpair->rsps);
1114 0 : rqpair->rsps = nvme_rdma_create_rsps(&opts);
1115 0 : if (!rqpair->rsps) {
1116 0 : SPDK_ERRLOG("Unable to create rqpair RDMA responses\n");
1117 0 : return -1;
1118 : }
1119 0 : SPDK_DEBUGLOG(nvme, "RDMA responses created\n");
1120 :
1121 0 : ret = nvme_rdma_qpair_submit_recvs(rqpair);
1122 0 : SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1123 0 : if (ret) {
1124 0 : SPDK_ERRLOG("Unable to submit rqpair RDMA responses\n");
1125 0 : return -1;
1126 : }
1127 0 : SPDK_DEBUGLOG(nvme, "RDMA responses submitted\n");
1128 : }
1129 :
1130 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND;
1131 :
1132 0 : return 0;
1133 : }
1134 :
1135 : static int
1136 0 : nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
1137 : {
1138 0 : struct rdma_conn_param param = {};
1139 0 : struct spdk_nvmf_rdma_request_private_data request_data = {};
1140 0 : struct ibv_device_attr attr;
1141 : int ret;
1142 : struct spdk_nvme_ctrlr *ctrlr;
1143 :
1144 0 : ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
1145 0 : if (ret != 0) {
1146 0 : SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
1147 0 : return ret;
1148 : }
1149 :
1150 0 : param.responder_resources = attr.max_qp_rd_atom;
1151 :
1152 0 : ctrlr = rqpair->qpair.ctrlr;
1153 0 : if (!ctrlr) {
1154 0 : return -1;
1155 : }
1156 :
1157 0 : request_data.qid = rqpair->qpair.id;
1158 0 : request_data.hrqsize = rqpair->num_entries + 1;
1159 0 : request_data.hsqsize = rqpair->num_entries;
1160 0 : request_data.cntlid = ctrlr->cntlid;
1161 :
1162 0 : param.private_data = &request_data;
1163 0 : param.private_data_len = sizeof(request_data);
1164 0 : param.retry_count = ctrlr->opts.transport_retry_count;
1165 0 : param.rnr_retry_count = 7;
1166 :
1167 : /* Fields below are ignored by rdma cm if qpair has been
1168 : * created using rdma cm API. */
1169 0 : param.srq = 0;
1170 0 : param.qp_num = rqpair->rdma_qp->qp->qp_num;
1171 :
1172 0 : ret = rdma_connect(rqpair->cm_id, ¶m);
1173 0 : if (ret) {
1174 0 : SPDK_ERRLOG("nvme rdma connect error\n");
1175 0 : return ret;
1176 : }
1177 :
1178 0 : return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ESTABLISHED,
1179 : nvme_rdma_connect_established);
1180 : }
1181 :
1182 : static int
1183 0 : nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1184 : {
1185 0 : struct sockaddr_storage dst_addr;
1186 0 : struct sockaddr_storage src_addr;
1187 : bool src_addr_specified;
1188 0 : long int port, src_port = 0;
1189 : int rc;
1190 : struct nvme_rdma_ctrlr *rctrlr;
1191 : struct nvme_rdma_qpair *rqpair;
1192 : struct nvme_rdma_poll_group *group;
1193 : int family;
1194 :
1195 0 : rqpair = nvme_rdma_qpair(qpair);
1196 0 : rctrlr = nvme_rdma_ctrlr(ctrlr);
1197 0 : assert(rctrlr != NULL);
1198 :
1199 0 : switch (ctrlr->trid.adrfam) {
1200 0 : case SPDK_NVMF_ADRFAM_IPV4:
1201 0 : family = AF_INET;
1202 0 : break;
1203 0 : case SPDK_NVMF_ADRFAM_IPV6:
1204 0 : family = AF_INET6;
1205 0 : break;
1206 0 : default:
1207 0 : SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
1208 0 : return -1;
1209 : }
1210 :
1211 0 : SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
1212 :
1213 0 : memset(&dst_addr, 0, sizeof(dst_addr));
1214 :
1215 0 : SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid);
1216 0 : rc = nvme_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid, &port);
1217 0 : if (rc != 0) {
1218 0 : SPDK_ERRLOG("dst_addr nvme_parse_addr() failed\n");
1219 0 : return -1;
1220 : }
1221 :
1222 0 : if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
1223 0 : memset(&src_addr, 0, sizeof(src_addr));
1224 0 : rc = nvme_parse_addr(&src_addr, family,
1225 0 : ctrlr->opts.src_addr[0] ? ctrlr->opts.src_addr : NULL,
1226 0 : ctrlr->opts.src_svcid[0] ? ctrlr->opts.src_svcid : NULL,
1227 : &src_port);
1228 0 : if (rc != 0) {
1229 0 : SPDK_ERRLOG("src_addr nvme_parse_addr() failed\n");
1230 0 : return -1;
1231 : }
1232 0 : src_addr_specified = true;
1233 : } else {
1234 0 : src_addr_specified = false;
1235 : }
1236 :
1237 0 : rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
1238 0 : if (rc < 0) {
1239 0 : SPDK_ERRLOG("rdma_create_id() failed\n");
1240 0 : return -1;
1241 : }
1242 :
1243 0 : rc = nvme_rdma_resolve_addr(rqpair,
1244 : src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
1245 : (struct sockaddr *)&dst_addr);
1246 0 : if (rc < 0) {
1247 0 : SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
1248 0 : return -1;
1249 : }
1250 :
1251 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_INITIALIZING;
1252 :
1253 0 : if (qpair->poll_group != NULL) {
1254 0 : group = nvme_rdma_poll_group(qpair->poll_group);
1255 0 : TAILQ_INSERT_TAIL(&group->connecting_qpairs, rqpair, link_connecting);
1256 : }
1257 :
1258 0 : return 0;
1259 : }
1260 :
1261 : static int
1262 0 : nvme_rdma_stale_conn_reconnect(struct nvme_rdma_qpair *rqpair)
1263 : {
1264 0 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1265 :
1266 0 : if (spdk_get_ticks() < rqpair->evt_timeout_ticks) {
1267 0 : return -EAGAIN;
1268 : }
1269 :
1270 0 : return nvme_rdma_ctrlr_connect_qpair(qpair->ctrlr, qpair);
1271 : }
1272 :
1273 : static int
1274 0 : nvme_rdma_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr,
1275 : struct spdk_nvme_qpair *qpair)
1276 : {
1277 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1278 : int rc;
1279 :
1280 0 : if (rqpair->in_connect_poll) {
1281 0 : return -EAGAIN;
1282 : }
1283 :
1284 0 : rqpair->in_connect_poll = true;
1285 :
1286 0 : switch (rqpair->state) {
1287 0 : case NVME_RDMA_QPAIR_STATE_INVALID:
1288 0 : rc = -EAGAIN;
1289 0 : break;
1290 :
1291 0 : case NVME_RDMA_QPAIR_STATE_INITIALIZING:
1292 : case NVME_RDMA_QPAIR_STATE_EXITING:
1293 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1294 0 : nvme_ctrlr_lock(ctrlr);
1295 : }
1296 :
1297 0 : rc = nvme_rdma_process_event_poll(rqpair);
1298 :
1299 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1300 0 : nvme_ctrlr_unlock(ctrlr);
1301 : }
1302 :
1303 0 : if (rc == 0) {
1304 0 : rc = -EAGAIN;
1305 : }
1306 0 : rqpair->in_connect_poll = false;
1307 :
1308 0 : return rc;
1309 :
1310 0 : case NVME_RDMA_QPAIR_STATE_STALE_CONN:
1311 0 : rc = nvme_rdma_stale_conn_reconnect(rqpair);
1312 0 : if (rc == 0) {
1313 0 : rc = -EAGAIN;
1314 : }
1315 0 : break;
1316 0 : case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND:
1317 0 : rc = nvme_fabric_qpair_connect_async(qpair, rqpair->num_entries + 1);
1318 0 : if (rc == 0) {
1319 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL;
1320 0 : rc = -EAGAIN;
1321 : } else {
1322 0 : SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
1323 : }
1324 0 : break;
1325 0 : case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL:
1326 0 : rc = nvme_fabric_qpair_connect_poll(qpair);
1327 0 : if (rc == 0) {
1328 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING;
1329 0 : nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
1330 0 : } else if (rc != -EAGAIN) {
1331 0 : SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n");
1332 : }
1333 0 : break;
1334 0 : case NVME_RDMA_QPAIR_STATE_RUNNING:
1335 0 : rc = 0;
1336 0 : break;
1337 0 : default:
1338 0 : assert(false);
1339 : rc = -EINVAL;
1340 : break;
1341 : }
1342 :
1343 0 : rqpair->in_connect_poll = false;
1344 :
1345 0 : return rc;
1346 : }
1347 :
1348 : static inline int
1349 28 : nvme_rdma_get_memory_translation(struct nvme_request *req, struct nvme_rdma_qpair *rqpair,
1350 : struct nvme_rdma_memory_translation_ctx *_ctx)
1351 : {
1352 28 : struct spdk_memory_domain_translation_ctx ctx;
1353 28 : struct spdk_memory_domain_translation_result dma_translation = {.iov_count = 0};
1354 28 : struct spdk_rdma_utils_memory_translation rdma_translation;
1355 : int rc;
1356 :
1357 28 : assert(req);
1358 28 : assert(rqpair);
1359 28 : assert(_ctx);
1360 :
1361 28 : if (req->payload.opts && req->payload.opts->memory_domain) {
1362 2 : ctx.size = sizeof(struct spdk_memory_domain_translation_ctx);
1363 2 : ctx.rdma.ibv_qp = rqpair->rdma_qp->qp;
1364 2 : dma_translation.size = sizeof(struct spdk_memory_domain_translation_result);
1365 :
1366 2 : rc = spdk_memory_domain_translate_data(req->payload.opts->memory_domain,
1367 2 : req->payload.opts->memory_domain_ctx,
1368 : rqpair->memory_domain, &ctx, _ctx->addr,
1369 : _ctx->length, &dma_translation);
1370 2 : if (spdk_unlikely(rc) || dma_translation.iov_count != 1) {
1371 1 : SPDK_ERRLOG("DMA memory translation failed, rc %d, iov count %u\n", rc, dma_translation.iov_count);
1372 1 : return rc;
1373 : }
1374 :
1375 1 : _ctx->lkey = dma_translation.rdma.lkey;
1376 1 : _ctx->rkey = dma_translation.rdma.rkey;
1377 1 : _ctx->addr = dma_translation.iov.iov_base;
1378 1 : _ctx->length = dma_translation.iov.iov_len;
1379 : } else {
1380 26 : rc = spdk_rdma_utils_get_translation(rqpair->mr_map, _ctx->addr, _ctx->length, &rdma_translation);
1381 26 : if (spdk_unlikely(rc)) {
1382 2 : SPDK_ERRLOG("RDMA memory translation failed, rc %d\n", rc);
1383 2 : return rc;
1384 : }
1385 24 : if (rdma_translation.translation_type == SPDK_RDMA_UTILS_TRANSLATION_MR) {
1386 24 : _ctx->lkey = rdma_translation.mr_or_key.mr->lkey;
1387 24 : _ctx->rkey = rdma_translation.mr_or_key.mr->rkey;
1388 : } else {
1389 0 : _ctx->lkey = _ctx->rkey = (uint32_t)rdma_translation.mr_or_key.key;
1390 : }
1391 : }
1392 :
1393 25 : return 0;
1394 : }
1395 :
1396 :
1397 : /*
1398 : * Build SGL describing empty payload.
1399 : */
1400 : static int
1401 2 : nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
1402 : {
1403 2 : struct nvme_request *req = rdma_req->req;
1404 :
1405 2 : req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1406 :
1407 : /* The first element of this SGL is pointing at an
1408 : * spdk_nvmf_cmd object. For this particular command,
1409 : * we only need the first 64 bytes corresponding to
1410 : * the NVMe command. */
1411 2 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1412 :
1413 : /* The RDMA SGL needs one element describing the NVMe command. */
1414 2 : rdma_req->send_wr.num_sge = 1;
1415 :
1416 2 : req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1417 2 : req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1418 2 : req->cmd.dptr.sgl1.keyed.length = 0;
1419 2 : req->cmd.dptr.sgl1.keyed.key = 0;
1420 2 : req->cmd.dptr.sgl1.address = 0;
1421 :
1422 2 : return 0;
1423 : }
1424 :
1425 : /*
1426 : * Build inline SGL describing contiguous payload buffer.
1427 : */
1428 : static int
1429 3 : nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
1430 : struct spdk_nvme_rdma_req *rdma_req)
1431 : {
1432 3 : struct nvme_request *req = rdma_req->req;
1433 3 : struct nvme_rdma_memory_translation_ctx ctx = {
1434 3 : .addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset,
1435 3 : .length = req->payload_size
1436 : };
1437 : int rc;
1438 :
1439 3 : assert(ctx.length != 0);
1440 3 : assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1441 :
1442 3 : rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1443 3 : if (spdk_unlikely(rc)) {
1444 0 : return -1;
1445 : }
1446 :
1447 3 : rdma_req->send_sgl[1].lkey = ctx.lkey;
1448 :
1449 : /* The first element of this SGL is pointing at an
1450 : * spdk_nvmf_cmd object. For this particular command,
1451 : * we only need the first 64 bytes corresponding to
1452 : * the NVMe command. */
1453 3 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1454 :
1455 3 : rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
1456 3 : rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
1457 :
1458 : /* The RDMA SGL contains two elements. The first describes
1459 : * the NVMe command and the second describes the data
1460 : * payload. */
1461 3 : rdma_req->send_wr.num_sge = 2;
1462 :
1463 3 : req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1464 3 : req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1465 3 : req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1466 3 : req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
1467 : /* Inline only supported for icdoff == 0 currently. This function will
1468 : * not get called for controllers with other values. */
1469 3 : req->cmd.dptr.sgl1.address = (uint64_t)0;
1470 :
1471 3 : return 0;
1472 : }
1473 :
1474 : /*
1475 : * Build SGL describing contiguous payload buffer.
1476 : */
1477 : static int
1478 3 : nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
1479 : struct spdk_nvme_rdma_req *rdma_req)
1480 : {
1481 3 : struct nvme_request *req = rdma_req->req;
1482 3 : struct nvme_rdma_memory_translation_ctx ctx = {
1483 3 : .addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset,
1484 3 : .length = req->payload_size
1485 : };
1486 : int rc;
1487 :
1488 3 : assert(req->payload_size != 0);
1489 3 : assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1490 :
1491 3 : if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1492 1 : SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1493 : req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1494 1 : return -1;
1495 : }
1496 :
1497 2 : rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1498 2 : if (spdk_unlikely(rc)) {
1499 0 : return -1;
1500 : }
1501 :
1502 2 : req->cmd.dptr.sgl1.keyed.key = ctx.rkey;
1503 :
1504 : /* The first element of this SGL is pointing at an
1505 : * spdk_nvmf_cmd object. For this particular command,
1506 : * we only need the first 64 bytes corresponding to
1507 : * the NVMe command. */
1508 2 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1509 :
1510 : /* The RDMA SGL needs one element describing the NVMe command. */
1511 2 : rdma_req->send_wr.num_sge = 1;
1512 :
1513 2 : req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1514 2 : req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1515 2 : req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1516 2 : req->cmd.dptr.sgl1.keyed.length = (uint32_t)ctx.length;
1517 2 : req->cmd.dptr.sgl1.address = (uint64_t)ctx.addr;
1518 :
1519 2 : return 0;
1520 : }
1521 :
1522 : /*
1523 : * Build SGL describing scattered payload buffer.
1524 : */
1525 : static int
1526 7 : nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
1527 : struct spdk_nvme_rdma_req *rdma_req)
1528 : {
1529 7 : struct nvme_request *req = rdma_req->req;
1530 7 : struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
1531 7 : struct nvme_rdma_memory_translation_ctx ctx;
1532 : uint32_t remaining_size;
1533 7 : uint32_t sge_length;
1534 : int rc, max_num_sgl, num_sgl_desc;
1535 :
1536 7 : assert(req->payload_size != 0);
1537 7 : assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1538 7 : assert(req->payload.reset_sgl_fn != NULL);
1539 7 : assert(req->payload.next_sge_fn != NULL);
1540 7 : req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1541 :
1542 7 : max_num_sgl = req->qpair->ctrlr->max_sges;
1543 :
1544 7 : remaining_size = req->payload_size;
1545 7 : num_sgl_desc = 0;
1546 : do {
1547 18 : rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &sge_length);
1548 18 : if (rc) {
1549 1 : return -1;
1550 : }
1551 :
1552 17 : sge_length = spdk_min(remaining_size, sge_length);
1553 :
1554 17 : if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1555 1 : SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1556 : sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1557 1 : return -1;
1558 : }
1559 16 : ctx.length = sge_length;
1560 16 : rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1561 16 : if (spdk_unlikely(rc)) {
1562 1 : return -1;
1563 : }
1564 :
1565 15 : cmd->sgl[num_sgl_desc].keyed.key = ctx.rkey;
1566 15 : cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1567 15 : cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1568 15 : cmd->sgl[num_sgl_desc].keyed.length = (uint32_t)ctx.length;
1569 15 : cmd->sgl[num_sgl_desc].address = (uint64_t)ctx.addr;
1570 :
1571 15 : remaining_size -= ctx.length;
1572 15 : num_sgl_desc++;
1573 15 : } while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
1574 :
1575 :
1576 : /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
1577 4 : if (remaining_size > 0) {
1578 0 : return -1;
1579 : }
1580 :
1581 4 : req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1582 :
1583 : /* The RDMA SGL needs one element describing some portion
1584 : * of the spdk_nvmf_cmd structure. */
1585 4 : rdma_req->send_wr.num_sge = 1;
1586 :
1587 : /*
1588 : * If only one SGL descriptor is required, it can be embedded directly in the command
1589 : * as a data block descriptor.
1590 : */
1591 4 : if (num_sgl_desc == 1) {
1592 : /* The first element of this SGL is pointing at an
1593 : * spdk_nvmf_cmd object. For this particular command,
1594 : * we only need the first 64 bytes corresponding to
1595 : * the NVMe command. */
1596 2 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1597 :
1598 2 : req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type;
1599 2 : req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype;
1600 2 : req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length;
1601 2 : req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key;
1602 2 : req->cmd.dptr.sgl1.address = cmd->sgl[0].address;
1603 : } else {
1604 : /*
1605 : * Otherwise, The SGL descriptor embedded in the command must point to the list of
1606 : * SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
1607 : */
1608 2 : uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc;
1609 :
1610 2 : if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) {
1611 1 : SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n",
1612 : descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes);
1613 1 : return -1;
1614 : }
1615 1 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size;
1616 :
1617 1 : req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1618 1 : req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1619 1 : req->cmd.dptr.sgl1.unkeyed.length = descriptors_size;
1620 1 : req->cmd.dptr.sgl1.address = (uint64_t)0;
1621 : }
1622 :
1623 3 : return 0;
1624 : }
1625 :
1626 : /*
1627 : * Build inline SGL describing sgl payload buffer.
1628 : */
1629 : static int
1630 3 : nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
1631 : struct spdk_nvme_rdma_req *rdma_req)
1632 : {
1633 3 : struct nvme_request *req = rdma_req->req;
1634 3 : struct nvme_rdma_memory_translation_ctx ctx;
1635 3 : uint32_t length;
1636 : int rc;
1637 :
1638 3 : assert(req->payload_size != 0);
1639 3 : assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1640 3 : assert(req->payload.reset_sgl_fn != NULL);
1641 3 : assert(req->payload.next_sge_fn != NULL);
1642 3 : req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1643 :
1644 3 : rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &length);
1645 3 : if (rc) {
1646 0 : return -1;
1647 : }
1648 :
1649 3 : if (length < req->payload_size) {
1650 0 : SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n");
1651 0 : return nvme_rdma_build_sgl_request(rqpair, rdma_req);
1652 : }
1653 :
1654 3 : if (length > req->payload_size) {
1655 0 : length = req->payload_size;
1656 : }
1657 :
1658 3 : ctx.length = length;
1659 3 : rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1660 3 : if (spdk_unlikely(rc)) {
1661 0 : return -1;
1662 : }
1663 :
1664 3 : rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
1665 3 : rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
1666 3 : rdma_req->send_sgl[1].lkey = ctx.lkey;
1667 :
1668 3 : rdma_req->send_wr.num_sge = 2;
1669 :
1670 : /* The first element of this SGL is pointing at an
1671 : * spdk_nvmf_cmd object. For this particular command,
1672 : * we only need the first 64 bytes corresponding to
1673 : * the NVMe command. */
1674 3 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1675 :
1676 3 : req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1677 3 : req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1678 3 : req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1679 3 : req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
1680 : /* Inline only supported for icdoff == 0 currently. This function will
1681 : * not get called for controllers with other values. */
1682 3 : req->cmd.dptr.sgl1.address = (uint64_t)0;
1683 :
1684 3 : return 0;
1685 : }
1686 :
1687 : static int
1688 6 : nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
1689 : struct spdk_nvme_rdma_req *rdma_req)
1690 : {
1691 6 : struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
1692 : enum nvme_payload_type payload_type;
1693 : bool icd_supported;
1694 : int rc;
1695 :
1696 6 : assert(rdma_req->req == NULL);
1697 6 : rdma_req->req = req;
1698 6 : req->cmd.cid = rdma_req->id;
1699 6 : payload_type = nvme_payload_type(&req->payload);
1700 : /*
1701 : * Check if icdoff is non zero, to avoid interop conflicts with
1702 : * targets with non-zero icdoff. Both SPDK and the Linux kernel
1703 : * targets use icdoff = 0. For targets with non-zero icdoff, we
1704 : * will currently just not use inline data for now.
1705 : */
1706 6 : icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER
1707 6 : && req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0;
1708 :
1709 6 : if (req->payload_size == 0) {
1710 2 : rc = nvme_rdma_build_null_request(rdma_req);
1711 4 : } else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) {
1712 2 : if (icd_supported) {
1713 1 : rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
1714 : } else {
1715 1 : rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
1716 : }
1717 2 : } else if (payload_type == NVME_PAYLOAD_TYPE_SGL) {
1718 2 : if (icd_supported) {
1719 1 : rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
1720 : } else {
1721 1 : rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
1722 : }
1723 : } else {
1724 0 : rc = -1;
1725 : }
1726 :
1727 6 : if (rc) {
1728 0 : rdma_req->req = NULL;
1729 0 : return rc;
1730 : }
1731 :
1732 6 : memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
1733 6 : return 0;
1734 : }
1735 :
1736 : static struct spdk_nvme_qpair *
1737 5 : nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
1738 : uint16_t qid, uint32_t qsize,
1739 : enum spdk_nvme_qprio qprio,
1740 : uint32_t num_requests,
1741 : bool delay_cmd_submit,
1742 : bool async)
1743 : {
1744 : struct nvme_rdma_qpair *rqpair;
1745 : struct spdk_nvme_qpair *qpair;
1746 : int rc;
1747 :
1748 5 : if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) {
1749 2 : SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n",
1750 : qsize, SPDK_NVME_QUEUE_MIN_ENTRIES);
1751 2 : return NULL;
1752 : }
1753 :
1754 3 : rqpair = spdk_zmalloc(sizeof(struct nvme_rdma_qpair), 0, NULL, SPDK_ENV_SOCKET_ID_ANY,
1755 : SPDK_MALLOC_DMA);
1756 3 : if (!rqpair) {
1757 0 : SPDK_ERRLOG("failed to get create rqpair\n");
1758 0 : return NULL;
1759 : }
1760 :
1761 : /* Set num_entries one less than queue size. According to NVMe
1762 : * and NVMe-oF specs we can not submit queue size requests,
1763 : * one slot shall always remain empty.
1764 : */
1765 3 : rqpair->num_entries = qsize - 1;
1766 3 : rqpair->delay_cmd_submit = delay_cmd_submit;
1767 3 : rqpair->state = NVME_RDMA_QPAIR_STATE_INVALID;
1768 3 : qpair = &rqpair->qpair;
1769 3 : rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async);
1770 3 : if (rc != 0) {
1771 0 : spdk_free(rqpair);
1772 0 : return NULL;
1773 : }
1774 :
1775 3 : return qpair;
1776 : }
1777 :
1778 : static void
1779 1 : nvme_rdma_qpair_destroy(struct nvme_rdma_qpair *rqpair)
1780 : {
1781 1 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1782 : struct nvme_rdma_ctrlr *rctrlr;
1783 : struct nvme_rdma_cm_event_entry *entry, *tmp;
1784 :
1785 1 : spdk_rdma_utils_free_mem_map(&rqpair->mr_map);
1786 :
1787 1 : if (rqpair->evt) {
1788 0 : rdma_ack_cm_event(rqpair->evt);
1789 0 : rqpair->evt = NULL;
1790 : }
1791 :
1792 : /*
1793 : * This works because we have the controller lock both in
1794 : * this function and in the function where we add new events.
1795 : */
1796 1 : if (qpair->ctrlr != NULL) {
1797 1 : rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
1798 1 : STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
1799 0 : if (entry->evt->id->context == rqpair) {
1800 0 : STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
1801 0 : rdma_ack_cm_event(entry->evt);
1802 0 : STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
1803 : }
1804 : }
1805 : }
1806 :
1807 1 : if (rqpair->cm_id) {
1808 0 : if (rqpair->rdma_qp) {
1809 0 : spdk_rdma_utils_put_pd(rqpair->rdma_qp->qp->pd);
1810 0 : spdk_rdma_provider_qp_destroy(rqpair->rdma_qp);
1811 0 : rqpair->rdma_qp = NULL;
1812 : }
1813 : }
1814 :
1815 1 : if (rqpair->poller) {
1816 : struct nvme_rdma_poll_group *group;
1817 :
1818 0 : assert(qpair->poll_group);
1819 0 : group = nvme_rdma_poll_group(qpair->poll_group);
1820 :
1821 0 : nvme_rdma_poll_group_put_poller(group, rqpair->poller);
1822 :
1823 0 : rqpair->poller = NULL;
1824 0 : rqpair->cq = NULL;
1825 0 : if (rqpair->srq) {
1826 0 : rqpair->srq = NULL;
1827 0 : rqpair->rsps = NULL;
1828 : }
1829 1 : } else if (rqpair->cq) {
1830 0 : ibv_destroy_cq(rqpair->cq);
1831 0 : rqpair->cq = NULL;
1832 : }
1833 :
1834 1 : nvme_rdma_free_reqs(rqpair);
1835 1 : nvme_rdma_free_rsps(rqpair->rsps);
1836 1 : rqpair->rsps = NULL;
1837 :
1838 : /* destroy cm_id last so cma device will not be freed before we destroy the cq. */
1839 1 : if (rqpair->cm_id) {
1840 0 : rdma_destroy_id(rqpair->cm_id);
1841 0 : rqpair->cm_id = NULL;
1842 : }
1843 1 : }
1844 :
1845 : static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
1846 :
1847 : static int
1848 1 : nvme_rdma_qpair_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
1849 : {
1850 1 : if (ret) {
1851 0 : SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
1852 0 : goto quiet;
1853 : }
1854 :
1855 1 : if (rqpair->poller == NULL) {
1856 : /* If poller is not used, cq is not shared.
1857 : * So complete disconnecting qpair immediately.
1858 : */
1859 1 : goto quiet;
1860 : }
1861 :
1862 0 : if (rqpair->rsps == NULL) {
1863 0 : goto quiet;
1864 : }
1865 :
1866 0 : if (rqpair->need_destroy ||
1867 0 : (rqpair->current_num_sends != 0 ||
1868 0 : (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) {
1869 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_LINGERING;
1870 0 : rqpair->evt_timeout_ticks = (NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US * spdk_get_ticks_hz()) /
1871 0 : SPDK_SEC_TO_USEC + spdk_get_ticks();
1872 :
1873 0 : return -EAGAIN;
1874 : }
1875 :
1876 0 : quiet:
1877 1 : rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
1878 :
1879 1 : nvme_rdma_qpair_abort_reqs(&rqpair->qpair, 0);
1880 1 : nvme_rdma_qpair_destroy(rqpair);
1881 1 : nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
1882 :
1883 1 : return 0;
1884 : }
1885 :
1886 : static int
1887 0 : nvme_rdma_qpair_wait_until_quiet(struct nvme_rdma_qpair *rqpair)
1888 : {
1889 0 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1890 0 : struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
1891 :
1892 0 : if (spdk_get_ticks() < rqpair->evt_timeout_ticks &&
1893 0 : (rqpair->current_num_sends != 0 ||
1894 0 : (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) {
1895 0 : return -EAGAIN;
1896 : }
1897 :
1898 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
1899 0 : nvme_rdma_qpair_abort_reqs(&rqpair->qpair, 0);
1900 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1901 0 : nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1902 : }
1903 0 : nvme_rdma_qpair_destroy(rqpair);
1904 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1905 0 : nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1906 : }
1907 0 : nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
1908 :
1909 0 : return 0;
1910 : }
1911 :
1912 : static void
1913 0 : _nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1914 : nvme_rdma_cm_event_cb disconnected_qpair_cb)
1915 : {
1916 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1917 : int rc;
1918 :
1919 0 : assert(disconnected_qpair_cb != NULL);
1920 :
1921 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_EXITING;
1922 :
1923 0 : if (rqpair->cm_id) {
1924 0 : if (rqpair->rdma_qp) {
1925 0 : rc = spdk_rdma_provider_qp_disconnect(rqpair->rdma_qp);
1926 0 : if ((qpair->ctrlr != NULL) && (rc == 0)) {
1927 0 : rc = nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_DISCONNECTED,
1928 : disconnected_qpair_cb);
1929 0 : if (rc == 0) {
1930 0 : return;
1931 : }
1932 : }
1933 : }
1934 : }
1935 :
1936 0 : disconnected_qpair_cb(rqpair, 0);
1937 : }
1938 :
1939 : static int
1940 0 : nvme_rdma_ctrlr_disconnect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1941 : {
1942 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1943 : int rc;
1944 :
1945 0 : switch (rqpair->state) {
1946 0 : case NVME_RDMA_QPAIR_STATE_EXITING:
1947 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1948 0 : nvme_ctrlr_lock(ctrlr);
1949 : }
1950 :
1951 0 : rc = nvme_rdma_process_event_poll(rqpair);
1952 :
1953 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1954 0 : nvme_ctrlr_unlock(ctrlr);
1955 : }
1956 0 : break;
1957 :
1958 0 : case NVME_RDMA_QPAIR_STATE_LINGERING:
1959 0 : rc = nvme_rdma_qpair_wait_until_quiet(rqpair);
1960 0 : break;
1961 0 : case NVME_RDMA_QPAIR_STATE_EXITED:
1962 0 : rc = 0;
1963 0 : break;
1964 :
1965 0 : default:
1966 0 : assert(false);
1967 : rc = -EAGAIN;
1968 : break;
1969 : }
1970 :
1971 0 : return rc;
1972 : }
1973 :
1974 : static void
1975 0 : nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1976 : {
1977 : int rc;
1978 :
1979 0 : _nvme_rdma_ctrlr_disconnect_qpair(ctrlr, qpair, nvme_rdma_qpair_disconnected);
1980 :
1981 : /* If the async mode is disabled, poll the qpair until it is actually disconnected.
1982 : * It is ensured that poll_group_process_completions() calls disconnected_qpair_cb
1983 : * for any disconnected qpair. Hence, we do not have to check if the qpair is in
1984 : * a poll group or not.
1985 : * At the same time, if the qpair is being destroyed, i.e. this function is called by
1986 : * spdk_nvme_ctrlr_free_io_qpair then we need to wait until qpair is disconnected, otherwise
1987 : * we may leak some resources.
1988 : */
1989 0 : if (qpair->async && !qpair->destroy_in_progress) {
1990 0 : return;
1991 : }
1992 :
1993 : while (1) {
1994 0 : rc = nvme_rdma_ctrlr_disconnect_qpair_poll(ctrlr, qpair);
1995 0 : if (rc != -EAGAIN) {
1996 0 : break;
1997 : }
1998 : }
1999 : }
2000 :
2001 : static int
2002 0 : nvme_rdma_stale_conn_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
2003 : {
2004 0 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2005 :
2006 0 : if (ret) {
2007 0 : SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
2008 : }
2009 :
2010 0 : nvme_rdma_qpair_destroy(rqpair);
2011 :
2012 0 : qpair->last_transport_failure_reason = qpair->transport_failure_reason;
2013 0 : qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_NONE;
2014 :
2015 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_STALE_CONN;
2016 0 : rqpair->evt_timeout_ticks = (NVME_RDMA_STALE_CONN_RETRY_DELAY_US * spdk_get_ticks_hz()) /
2017 0 : SPDK_SEC_TO_USEC + spdk_get_ticks();
2018 :
2019 0 : return 0;
2020 : }
2021 :
2022 : static int
2023 0 : nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair)
2024 : {
2025 0 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2026 :
2027 0 : if (rqpair->stale_conn_retry_count >= NVME_RDMA_STALE_CONN_RETRY_MAX) {
2028 0 : SPDK_ERRLOG("Retry failed %d times, give up stale connection to qpair (cntlid:%u, qid:%u).\n",
2029 : NVME_RDMA_STALE_CONN_RETRY_MAX, qpair->ctrlr->cntlid, qpair->id);
2030 0 : return -ESTALE;
2031 : }
2032 :
2033 0 : rqpair->stale_conn_retry_count++;
2034 :
2035 0 : SPDK_NOTICELOG("%d times, retry stale connection to qpair (cntlid:%u, qid:%u).\n",
2036 : rqpair->stale_conn_retry_count, qpair->ctrlr->cntlid, qpair->id);
2037 :
2038 0 : _nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair, nvme_rdma_stale_conn_disconnected);
2039 :
2040 0 : return 0;
2041 : }
2042 :
2043 : static int
2044 1 : nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
2045 : {
2046 : struct nvme_rdma_qpair *rqpair;
2047 :
2048 1 : assert(qpair != NULL);
2049 1 : rqpair = nvme_rdma_qpair(qpair);
2050 :
2051 1 : if (rqpair->state != NVME_RDMA_QPAIR_STATE_EXITED) {
2052 : int rc __attribute__((unused));
2053 :
2054 : /* qpair was removed from the poll group while the disconnect is not finished.
2055 : * Destroy rdma resources forcefully. */
2056 1 : rc = nvme_rdma_qpair_disconnected(rqpair, 0);
2057 1 : assert(rc == 0);
2058 : }
2059 :
2060 1 : nvme_rdma_qpair_abort_reqs(qpair, 0);
2061 1 : nvme_qpair_deinit(qpair);
2062 :
2063 1 : if (spdk_rdma_utils_put_memory_domain(rqpair->memory_domain) != 0) {
2064 0 : SPDK_ERRLOG("Failed to release memory domain\n");
2065 0 : assert(0);
2066 : }
2067 :
2068 1 : spdk_free(rqpair);
2069 :
2070 1 : return 0;
2071 : }
2072 :
2073 : static struct spdk_nvme_qpair *
2074 0 : nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
2075 : const struct spdk_nvme_io_qpair_opts *opts)
2076 : {
2077 0 : return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
2078 0 : opts->io_queue_requests,
2079 0 : opts->delay_cmd_submit,
2080 0 : opts->async_mode);
2081 : }
2082 :
2083 : static int
2084 0 : nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
2085 : {
2086 : /* do nothing here */
2087 0 : return 0;
2088 : }
2089 :
2090 : static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
2091 :
2092 : /* We have to use the typedef in the function declaration to appease astyle. */
2093 : typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t;
2094 :
2095 : static spdk_nvme_ctrlr_t *
2096 1 : nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
2097 : const struct spdk_nvme_ctrlr_opts *opts,
2098 : void *devhandle)
2099 : {
2100 : struct nvme_rdma_ctrlr *rctrlr;
2101 : struct ibv_context **contexts;
2102 1 : struct ibv_device_attr dev_attr;
2103 : int i, flag, rc;
2104 :
2105 1 : rctrlr = spdk_zmalloc(sizeof(struct nvme_rdma_ctrlr), 0, NULL, SPDK_ENV_SOCKET_ID_ANY,
2106 : SPDK_MALLOC_DMA);
2107 1 : if (rctrlr == NULL) {
2108 0 : SPDK_ERRLOG("could not allocate ctrlr\n");
2109 0 : return NULL;
2110 : }
2111 :
2112 1 : rctrlr->ctrlr.opts = *opts;
2113 1 : rctrlr->ctrlr.trid = *trid;
2114 :
2115 1 : if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) {
2116 1 : SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n",
2117 : NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT);
2118 1 : rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT;
2119 : }
2120 :
2121 1 : if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) {
2122 1 : SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n",
2123 : NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT);
2124 1 : rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT;
2125 : }
2126 :
2127 1 : contexts = rdma_get_devices(NULL);
2128 1 : if (contexts == NULL) {
2129 0 : SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2130 0 : spdk_free(rctrlr);
2131 0 : return NULL;
2132 : }
2133 :
2134 1 : i = 0;
2135 1 : rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS;
2136 :
2137 3 : while (contexts[i] != NULL) {
2138 2 : rc = ibv_query_device(contexts[i], &dev_attr);
2139 2 : if (rc < 0) {
2140 0 : SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2141 0 : rdma_free_devices(contexts);
2142 0 : spdk_free(rctrlr);
2143 0 : return NULL;
2144 : }
2145 2 : rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge);
2146 2 : i++;
2147 : }
2148 :
2149 1 : rdma_free_devices(contexts);
2150 :
2151 1 : rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
2152 1 : if (rc != 0) {
2153 0 : spdk_free(rctrlr);
2154 0 : return NULL;
2155 : }
2156 :
2157 1 : STAILQ_INIT(&rctrlr->pending_cm_events);
2158 1 : STAILQ_INIT(&rctrlr->free_cm_events);
2159 1 : rctrlr->cm_events = spdk_zmalloc(NVME_RDMA_NUM_CM_EVENTS * sizeof(*rctrlr->cm_events), 0, NULL,
2160 : SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
2161 1 : if (rctrlr->cm_events == NULL) {
2162 0 : SPDK_ERRLOG("unable to allocate buffers to hold CM events.\n");
2163 0 : goto destruct_ctrlr;
2164 : }
2165 :
2166 257 : for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) {
2167 256 : STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link);
2168 : }
2169 :
2170 1 : rctrlr->cm_channel = rdma_create_event_channel();
2171 1 : if (rctrlr->cm_channel == NULL) {
2172 0 : SPDK_ERRLOG("rdma_create_event_channel() failed\n");
2173 0 : goto destruct_ctrlr;
2174 : }
2175 :
2176 1 : flag = fcntl(rctrlr->cm_channel->fd, F_GETFL);
2177 1 : if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2178 0 : SPDK_ERRLOG("Cannot set event channel to non blocking\n");
2179 0 : goto destruct_ctrlr;
2180 : }
2181 :
2182 2 : rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
2183 1 : rctrlr->ctrlr.opts.admin_queue_size, 0,
2184 1 : rctrlr->ctrlr.opts.admin_queue_size, false, true);
2185 1 : if (!rctrlr->ctrlr.adminq) {
2186 0 : SPDK_ERRLOG("failed to create admin qpair\n");
2187 0 : goto destruct_ctrlr;
2188 : }
2189 :
2190 1 : if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
2191 0 : SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
2192 0 : goto destruct_ctrlr;
2193 : }
2194 :
2195 1 : SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n");
2196 1 : return &rctrlr->ctrlr;
2197 :
2198 0 : destruct_ctrlr:
2199 0 : nvme_ctrlr_destruct(&rctrlr->ctrlr);
2200 0 : return NULL;
2201 : }
2202 :
2203 : static int
2204 1 : nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
2205 : {
2206 1 : struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2207 : struct nvme_rdma_cm_event_entry *entry;
2208 :
2209 1 : if (ctrlr->adminq) {
2210 1 : nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq);
2211 : }
2212 :
2213 1 : STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) {
2214 0 : rdma_ack_cm_event(entry->evt);
2215 : }
2216 :
2217 1 : STAILQ_INIT(&rctrlr->free_cm_events);
2218 1 : STAILQ_INIT(&rctrlr->pending_cm_events);
2219 1 : spdk_free(rctrlr->cm_events);
2220 :
2221 1 : if (rctrlr->cm_channel) {
2222 1 : rdma_destroy_event_channel(rctrlr->cm_channel);
2223 1 : rctrlr->cm_channel = NULL;
2224 : }
2225 :
2226 1 : nvme_ctrlr_destruct_finish(ctrlr);
2227 :
2228 1 : spdk_free(rctrlr);
2229 :
2230 1 : return 0;
2231 : }
2232 :
2233 : static int
2234 2 : nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
2235 : struct nvme_request *req)
2236 : {
2237 : struct nvme_rdma_qpair *rqpair;
2238 : struct spdk_nvme_rdma_req *rdma_req;
2239 : struct ibv_send_wr *wr;
2240 : struct nvme_rdma_poll_group *group;
2241 :
2242 2 : rqpair = nvme_rdma_qpair(qpair);
2243 2 : assert(rqpair != NULL);
2244 2 : assert(req != NULL);
2245 :
2246 2 : rdma_req = nvme_rdma_req_get(rqpair);
2247 2 : if (spdk_unlikely(!rdma_req)) {
2248 1 : if (rqpair->poller) {
2249 1 : rqpair->poller->stats.queued_requests++;
2250 : }
2251 : /* Inform the upper layer to try again later. */
2252 1 : return -EAGAIN;
2253 : }
2254 :
2255 1 : if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
2256 0 : SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
2257 0 : nvme_rdma_req_put(rqpair, rdma_req);
2258 0 : return -1;
2259 : }
2260 :
2261 1 : TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
2262 :
2263 1 : if (!rqpair->link_active.tqe_prev && qpair->poll_group) {
2264 0 : group = nvme_rdma_poll_group(qpair->poll_group);
2265 0 : TAILQ_INSERT_TAIL(&group->active_qpairs, rqpair, link_active);
2266 : }
2267 1 : rqpair->num_outstanding_reqs++;
2268 :
2269 1 : assert(rqpair->current_num_sends < rqpair->num_entries);
2270 1 : rqpair->current_num_sends++;
2271 :
2272 1 : wr = &rdma_req->send_wr;
2273 1 : wr->next = NULL;
2274 1 : nvme_rdma_trace_ibv_sge(wr->sg_list);
2275 :
2276 1 : spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, wr);
2277 :
2278 1 : if (!rqpair->delay_cmd_submit) {
2279 1 : return nvme_rdma_qpair_submit_sends(rqpair);
2280 : }
2281 :
2282 0 : return 0;
2283 : }
2284 :
2285 : static int
2286 0 : nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
2287 : {
2288 : /* Currently, doing nothing here */
2289 0 : return 0;
2290 : }
2291 :
2292 : static void
2293 2 : nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
2294 : {
2295 : struct spdk_nvme_rdma_req *rdma_req, *tmp;
2296 2 : struct spdk_nvme_cpl cpl;
2297 2 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2298 :
2299 2 : cpl.sqid = qpair->id;
2300 2 : cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2301 2 : cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2302 2 : cpl.status.dnr = dnr;
2303 :
2304 : /*
2305 : * We cannot abort requests at the RDMA layer without
2306 : * unregistering them. If we do, we can still get error
2307 : * free completions on the shared completion queue.
2308 : */
2309 2 : if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING &&
2310 0 : nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) {
2311 0 : nvme_ctrlr_disconnect_qpair(qpair);
2312 : }
2313 :
2314 2 : TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2315 0 : nvme_rdma_req_complete(rdma_req, &cpl, true);
2316 : }
2317 2 : }
2318 :
2319 : static void
2320 0 : nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
2321 : {
2322 : uint64_t t02;
2323 : struct spdk_nvme_rdma_req *rdma_req, *tmp;
2324 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2325 0 : struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
2326 : struct spdk_nvme_ctrlr_process *active_proc;
2327 :
2328 : /* Don't check timeouts during controller initialization. */
2329 0 : if (ctrlr->state != NVME_CTRLR_STATE_READY) {
2330 0 : return;
2331 : }
2332 :
2333 0 : if (nvme_qpair_is_admin_queue(qpair)) {
2334 0 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
2335 : } else {
2336 0 : active_proc = qpair->active_proc;
2337 : }
2338 :
2339 : /* Only check timeouts if the current process has a timeout callback. */
2340 0 : if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
2341 0 : return;
2342 : }
2343 :
2344 0 : t02 = spdk_get_ticks();
2345 0 : TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2346 0 : assert(rdma_req->req != NULL);
2347 :
2348 0 : if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
2349 : /*
2350 : * The requests are in order, so as soon as one has not timed out,
2351 : * stop iterating.
2352 : */
2353 0 : break;
2354 : }
2355 : }
2356 : }
2357 :
2358 : static inline void
2359 0 : nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
2360 : {
2361 0 : struct spdk_nvme_rdma_rsp *rdma_rsp = rdma_req->rdma_rsp;
2362 0 : struct ibv_recv_wr *recv_wr = rdma_rsp->recv_wr;
2363 :
2364 0 : nvme_rdma_req_complete(rdma_req, &rdma_rsp->cpl, true);
2365 :
2366 0 : assert(rqpair->rsps->current_num_recvs < rqpair->rsps->num_entries);
2367 0 : rqpair->rsps->current_num_recvs++;
2368 :
2369 0 : recv_wr->next = NULL;
2370 0 : nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
2371 :
2372 0 : if (!rqpair->srq) {
2373 0 : spdk_rdma_provider_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr);
2374 : } else {
2375 0 : spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, recv_wr);
2376 : }
2377 0 : }
2378 :
2379 : #define MAX_COMPLETIONS_PER_POLL 128
2380 :
2381 : static void
2382 0 : nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason)
2383 : {
2384 0 : if (failure_reason == IBV_WC_RETRY_EXC_ERR) {
2385 0 : qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
2386 0 : } else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) {
2387 0 : qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
2388 : }
2389 :
2390 0 : nvme_ctrlr_disconnect_qpair(qpair);
2391 0 : }
2392 :
2393 : static struct nvme_rdma_qpair *
2394 4 : get_rdma_qpair_from_wc(struct nvme_rdma_poll_group *group, struct ibv_wc *wc)
2395 : {
2396 : struct spdk_nvme_qpair *qpair;
2397 : struct nvme_rdma_qpair *rqpair;
2398 :
2399 5 : STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) {
2400 2 : rqpair = nvme_rdma_qpair(qpair);
2401 2 : if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2402 1 : return rqpair;
2403 : }
2404 : }
2405 :
2406 4 : STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) {
2407 2 : rqpair = nvme_rdma_qpair(qpair);
2408 2 : if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2409 1 : return rqpair;
2410 : }
2411 : }
2412 :
2413 2 : return NULL;
2414 : }
2415 :
2416 : static inline void
2417 0 : nvme_rdma_log_wc_status(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc)
2418 : {
2419 0 : struct nvme_rdma_wr *rdma_wr = (struct nvme_rdma_wr *)wc->wr_id;
2420 :
2421 0 : if (wc->status == IBV_WC_WR_FLUSH_ERR) {
2422 : /* If qpair is in ERR state, we will receive completions for all posted and not completed
2423 : * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
2424 0 : SPDK_DEBUGLOG(nvme, "WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2425 : rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2426 : ibv_wc_status_str(wc->status));
2427 : } else {
2428 0 : SPDK_ERRLOG("WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2429 : rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2430 : ibv_wc_status_str(wc->status));
2431 : }
2432 0 : }
2433 :
2434 : static inline int
2435 0 : nvme_rdma_process_recv_completion(struct nvme_rdma_poller *poller, struct ibv_wc *wc,
2436 : struct nvme_rdma_wr *rdma_wr)
2437 : {
2438 : struct nvme_rdma_qpair *rqpair;
2439 : struct spdk_nvme_rdma_req *rdma_req;
2440 : struct spdk_nvme_rdma_rsp *rdma_rsp;
2441 :
2442 0 : rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr);
2443 :
2444 0 : if (poller && poller->srq) {
2445 0 : rqpair = get_rdma_qpair_from_wc(poller->group, wc);
2446 0 : if (spdk_unlikely(!rqpair)) {
2447 : /* Since we do not handle the LAST_WQE_REACHED event, we do not know when
2448 : * a Receive Queue in a QP, that is associated with an SRQ, is flushed.
2449 : * We may get a WC for a already destroyed QP.
2450 : *
2451 : * However, for the SRQ, this is not any error. Hence, just re-post the
2452 : * receive request to the SRQ to reuse for other QPs, and return 0.
2453 : */
2454 0 : spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
2455 0 : return 0;
2456 : }
2457 : } else {
2458 0 : rqpair = rdma_rsp->rqpair;
2459 0 : if (spdk_unlikely(!rqpair)) {
2460 : /* TODO: Fix forceful QP destroy when it is not async mode.
2461 : * CQ itself did not cause any error. Hence, return 0 for now.
2462 : */
2463 0 : SPDK_WARNLOG("QP might be already destroyed.\n");
2464 0 : return 0;
2465 : }
2466 : }
2467 :
2468 :
2469 0 : assert(rqpair->rsps->current_num_recvs > 0);
2470 0 : rqpair->rsps->current_num_recvs--;
2471 :
2472 0 : if (wc->status) {
2473 0 : nvme_rdma_log_wc_status(rqpair, wc);
2474 0 : goto err_wc;
2475 : }
2476 :
2477 0 : SPDK_DEBUGLOG(nvme, "CQ recv completion\n");
2478 :
2479 0 : if (wc->byte_len < sizeof(struct spdk_nvme_cpl)) {
2480 0 : SPDK_ERRLOG("recv length %u less than expected response size\n", wc->byte_len);
2481 0 : goto err_wc;
2482 : }
2483 0 : rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid];
2484 0 : rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED;
2485 0 : rdma_req->rdma_rsp = rdma_rsp;
2486 :
2487 0 : if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) == 0) {
2488 0 : return 0;
2489 : }
2490 :
2491 0 : rqpair->num_completions++;
2492 :
2493 0 : nvme_rdma_request_ready(rqpair, rdma_req);
2494 :
2495 0 : if (!rqpair->delay_cmd_submit) {
2496 0 : if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2497 0 : SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2498 0 : nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2499 0 : return -ENXIO;
2500 : }
2501 : }
2502 :
2503 0 : return 1;
2504 :
2505 0 : err_wc:
2506 0 : nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2507 0 : if (poller && poller->srq) {
2508 0 : spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
2509 : }
2510 0 : return -ENXIO;
2511 : }
2512 :
2513 : static inline int
2514 0 : nvme_rdma_process_send_completion(struct nvme_rdma_poller *poller,
2515 : struct nvme_rdma_qpair *rdma_qpair,
2516 : struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr)
2517 : {
2518 : struct nvme_rdma_qpair *rqpair;
2519 : struct spdk_nvme_rdma_req *rdma_req;
2520 :
2521 0 : rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr);
2522 0 : rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL;
2523 0 : if (!rqpair) {
2524 0 : rqpair = rdma_qpair != NULL ? rdma_qpair : get_rdma_qpair_from_wc(poller->group, wc);
2525 : }
2526 :
2527 : /* If we are flushing I/O */
2528 0 : if (wc->status) {
2529 0 : if (!rqpair) {
2530 : /* When poll_group is used, several qpairs share the same CQ and it is possible to
2531 : * receive a completion with error (e.g. IBV_WC_WR_FLUSH_ERR) for already disconnected qpair
2532 : * That happens due to qpair is destroyed while there are submitted but not completed send/receive
2533 : * Work Requests */
2534 0 : assert(poller);
2535 0 : return 0;
2536 : }
2537 0 : assert(rqpair->current_num_sends > 0);
2538 0 : rqpair->current_num_sends--;
2539 0 : nvme_rdma_log_wc_status(rqpair, wc);
2540 0 : nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2541 0 : if (rdma_req->rdma_rsp && poller && poller->srq) {
2542 0 : spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_req->rdma_rsp->recv_wr);
2543 : }
2544 0 : return -ENXIO;
2545 : }
2546 :
2547 : /* We do not support Soft Roce anymore. Other than Soft Roce's bug, we should not
2548 : * receive a completion without error status after qpair is disconnected/destroyed.
2549 : */
2550 0 : if (spdk_unlikely(rdma_req->req == NULL)) {
2551 : /*
2552 : * Some infiniband drivers do not guarantee the previous assumption after we
2553 : * received a RDMA_CM_EVENT_DEVICE_REMOVAL event.
2554 : */
2555 0 : SPDK_ERRLOG("Received malformed completion: request 0x%"PRIx64" type %d\n", wc->wr_id,
2556 : rdma_wr->type);
2557 0 : if (!rqpair || !rqpair->need_destroy) {
2558 0 : assert(0);
2559 : }
2560 0 : return -ENXIO;
2561 : }
2562 :
2563 0 : rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED;
2564 0 : assert(rqpair->current_num_sends > 0);
2565 0 : rqpair->current_num_sends--;
2566 :
2567 0 : if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) == 0) {
2568 0 : return 0;
2569 : }
2570 :
2571 0 : rqpair->num_completions++;
2572 :
2573 0 : nvme_rdma_request_ready(rqpair, rdma_req);
2574 :
2575 0 : if (!rqpair->delay_cmd_submit) {
2576 0 : if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2577 0 : SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2578 0 : nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2579 0 : return -ENXIO;
2580 : }
2581 : }
2582 :
2583 0 : return 1;
2584 : }
2585 :
2586 : static int
2587 0 : nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size,
2588 : struct nvme_rdma_poller *poller,
2589 : struct nvme_rdma_qpair *rdma_qpair,
2590 : uint64_t *rdma_completions)
2591 : {
2592 0 : struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL];
2593 : struct nvme_rdma_wr *rdma_wr;
2594 0 : uint32_t reaped = 0;
2595 0 : int completion_rc = 0;
2596 : int rc, _rc, i;
2597 :
2598 0 : rc = ibv_poll_cq(cq, batch_size, wc);
2599 0 : if (rc < 0) {
2600 0 : SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
2601 : errno, spdk_strerror(errno));
2602 0 : return -ECANCELED;
2603 0 : } else if (rc == 0) {
2604 0 : return 0;
2605 : }
2606 :
2607 0 : for (i = 0; i < rc; i++) {
2608 0 : rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id;
2609 0 : switch (rdma_wr->type) {
2610 0 : case RDMA_WR_TYPE_RECV:
2611 0 : _rc = nvme_rdma_process_recv_completion(poller, &wc[i], rdma_wr);
2612 0 : break;
2613 :
2614 0 : case RDMA_WR_TYPE_SEND:
2615 0 : _rc = nvme_rdma_process_send_completion(poller, rdma_qpair, &wc[i], rdma_wr);
2616 0 : break;
2617 :
2618 0 : default:
2619 0 : SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type);
2620 0 : return -ECANCELED;
2621 : }
2622 0 : if (spdk_likely(_rc >= 0)) {
2623 0 : reaped += _rc;
2624 : } else {
2625 0 : completion_rc = _rc;
2626 : }
2627 : }
2628 :
2629 0 : *rdma_completions += rc;
2630 :
2631 0 : if (completion_rc) {
2632 0 : return completion_rc;
2633 : }
2634 :
2635 0 : return reaped;
2636 : }
2637 :
2638 : static void
2639 0 : dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
2640 : {
2641 :
2642 0 : }
2643 :
2644 : static int
2645 0 : nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
2646 : uint32_t max_completions)
2647 : {
2648 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2649 0 : struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
2650 0 : int rc = 0, batch_size;
2651 : struct ibv_cq *cq;
2652 0 : uint64_t rdma_completions = 0;
2653 :
2654 : /*
2655 : * This is used during the connection phase. It's possible that we are still reaping error completions
2656 : * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq
2657 : * is shared.
2658 : */
2659 0 : if (qpair->poll_group != NULL) {
2660 0 : return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions,
2661 : dummy_disconnected_qpair_cb);
2662 : }
2663 :
2664 0 : if (max_completions == 0) {
2665 0 : max_completions = rqpair->num_entries;
2666 : } else {
2667 0 : max_completions = spdk_min(max_completions, rqpair->num_entries);
2668 : }
2669 :
2670 0 : switch (nvme_qpair_get_state(qpair)) {
2671 0 : case NVME_QPAIR_CONNECTING:
2672 0 : rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
2673 0 : if (rc == 0) {
2674 : /* Once the connection is completed, we can submit queued requests */
2675 0 : nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
2676 0 : } else if (rc != -EAGAIN) {
2677 0 : SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
2678 0 : goto failed;
2679 0 : } else if (rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING) {
2680 0 : return 0;
2681 : }
2682 0 : break;
2683 :
2684 0 : case NVME_QPAIR_DISCONNECTING:
2685 0 : nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
2686 0 : return -ENXIO;
2687 :
2688 0 : default:
2689 0 : if (nvme_qpair_is_admin_queue(qpair)) {
2690 0 : nvme_rdma_poll_events(rctrlr);
2691 : }
2692 0 : nvme_rdma_qpair_process_cm_event(rqpair);
2693 0 : break;
2694 : }
2695 :
2696 0 : if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
2697 0 : goto failed;
2698 : }
2699 :
2700 0 : cq = rqpair->cq;
2701 :
2702 0 : rqpair->num_completions = 0;
2703 : do {
2704 0 : batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL);
2705 0 : rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions);
2706 :
2707 0 : if (rc == 0) {
2708 0 : break;
2709 : /* Handle the case where we fail to poll the cq. */
2710 0 : } else if (rc == -ECANCELED) {
2711 0 : goto failed;
2712 0 : } else if (rc == -ENXIO) {
2713 0 : return rc;
2714 : }
2715 0 : } while (rqpair->num_completions < max_completions);
2716 :
2717 0 : if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) ||
2718 : nvme_rdma_qpair_submit_recvs(rqpair))) {
2719 0 : goto failed;
2720 : }
2721 :
2722 0 : if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
2723 0 : nvme_rdma_qpair_check_timeout(qpair);
2724 : }
2725 :
2726 0 : return rqpair->num_completions;
2727 :
2728 0 : failed:
2729 0 : nvme_rdma_fail_qpair(qpair, 0);
2730 0 : return -ENXIO;
2731 : }
2732 :
2733 : static uint32_t
2734 0 : nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
2735 : {
2736 : /* max_mr_size by ibv_query_device indicates the largest value that we can
2737 : * set for a registered memory region. It is independent from the actual
2738 : * I/O size and is very likely to be larger than 2 MiB which is the
2739 : * granularity we currently register memory regions. Hence return
2740 : * UINT32_MAX here and let the generic layer use the controller data to
2741 : * moderate this value.
2742 : */
2743 0 : return UINT32_MAX;
2744 : }
2745 :
2746 : static uint16_t
2747 5 : nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
2748 : {
2749 5 : struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2750 5 : uint32_t max_sge = rctrlr->max_sge;
2751 5 : uint32_t max_in_capsule_sge = (ctrlr->cdata.nvmf_specific.ioccsz * 16 -
2752 5 : sizeof(struct spdk_nvme_cmd)) /
2753 : sizeof(struct spdk_nvme_sgl_descriptor);
2754 :
2755 : /* Max SGE is limited by capsule size */
2756 5 : max_sge = spdk_min(max_sge, max_in_capsule_sge);
2757 : /* Max SGE may be limited by MSDBD */
2758 5 : if (ctrlr->cdata.nvmf_specific.msdbd != 0) {
2759 5 : max_sge = spdk_min(max_sge, ctrlr->cdata.nvmf_specific.msdbd);
2760 : }
2761 :
2762 : /* Max SGE can't be less than 1 */
2763 5 : max_sge = spdk_max(1, max_sge);
2764 5 : return max_sge;
2765 : }
2766 :
2767 : static int
2768 0 : nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
2769 : int (*iter_fn)(struct nvme_request *req, void *arg),
2770 : void *arg)
2771 : {
2772 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2773 : struct spdk_nvme_rdma_req *rdma_req, *tmp;
2774 : int rc;
2775 :
2776 0 : assert(iter_fn != NULL);
2777 :
2778 0 : TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2779 0 : assert(rdma_req->req != NULL);
2780 :
2781 0 : rc = iter_fn(rdma_req->req, arg);
2782 0 : if (rc != 0) {
2783 0 : return rc;
2784 : }
2785 : }
2786 :
2787 0 : return 0;
2788 : }
2789 :
2790 : static void
2791 0 : nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
2792 : {
2793 : struct spdk_nvme_rdma_req *rdma_req, *tmp;
2794 0 : struct spdk_nvme_cpl cpl;
2795 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2796 :
2797 0 : cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2798 0 : cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2799 :
2800 0 : TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2801 0 : assert(rdma_req->req != NULL);
2802 :
2803 0 : if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
2804 0 : continue;
2805 : }
2806 :
2807 0 : nvme_rdma_req_complete(rdma_req, &cpl, false);
2808 : }
2809 0 : }
2810 :
2811 : static void
2812 9 : nvme_rdma_poller_destroy(struct nvme_rdma_poller *poller)
2813 : {
2814 9 : if (poller->cq) {
2815 7 : ibv_destroy_cq(poller->cq);
2816 : }
2817 9 : if (poller->rsps) {
2818 0 : nvme_rdma_free_rsps(poller->rsps);
2819 : }
2820 9 : if (poller->srq) {
2821 0 : spdk_rdma_provider_srq_destroy(poller->srq);
2822 : }
2823 9 : if (poller->mr_map) {
2824 0 : spdk_rdma_utils_free_mem_map(&poller->mr_map);
2825 : }
2826 9 : if (poller->pd) {
2827 0 : spdk_rdma_utils_put_pd(poller->pd);
2828 : }
2829 9 : free(poller);
2830 9 : }
2831 :
2832 : static struct nvme_rdma_poller *
2833 9 : nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx)
2834 : {
2835 : struct nvme_rdma_poller *poller;
2836 9 : struct ibv_device_attr dev_attr;
2837 9 : struct spdk_rdma_provider_srq_init_attr srq_init_attr = {};
2838 9 : struct nvme_rdma_rsp_opts opts;
2839 : int num_cqe, max_num_cqe;
2840 : int rc;
2841 :
2842 9 : poller = calloc(1, sizeof(*poller));
2843 9 : if (poller == NULL) {
2844 0 : SPDK_ERRLOG("Unable to allocate poller.\n");
2845 0 : return NULL;
2846 : }
2847 :
2848 9 : poller->group = group;
2849 9 : poller->device = ctx;
2850 :
2851 9 : if (g_spdk_nvme_transport_opts.rdma_srq_size != 0) {
2852 0 : rc = ibv_query_device(ctx, &dev_attr);
2853 0 : if (rc) {
2854 0 : SPDK_ERRLOG("Unable to query RDMA device.\n");
2855 0 : goto fail;
2856 : }
2857 :
2858 0 : poller->pd = spdk_rdma_utils_get_pd(ctx);
2859 0 : if (poller->pd == NULL) {
2860 0 : SPDK_ERRLOG("Unable to get PD.\n");
2861 0 : goto fail;
2862 : }
2863 :
2864 0 : poller->mr_map = spdk_rdma_utils_create_mem_map(poller->pd, &g_nvme_hooks,
2865 : IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE);
2866 0 : if (poller->mr_map == NULL) {
2867 0 : SPDK_ERRLOG("Unable to create memory map.\n");
2868 0 : goto fail;
2869 : }
2870 :
2871 0 : srq_init_attr.stats = &poller->stats.rdma_stats.recv;
2872 0 : srq_init_attr.pd = poller->pd;
2873 0 : srq_init_attr.srq_init_attr.attr.max_wr = spdk_min((uint32_t)dev_attr.max_srq_wr,
2874 : g_spdk_nvme_transport_opts.rdma_srq_size);
2875 0 : srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(dev_attr.max_sge,
2876 : NVME_RDMA_DEFAULT_RX_SGE);
2877 :
2878 0 : poller->srq = spdk_rdma_provider_srq_create(&srq_init_attr);
2879 0 : if (poller->srq == NULL) {
2880 0 : SPDK_ERRLOG("Unable to create SRQ.\n");
2881 0 : goto fail;
2882 : }
2883 :
2884 0 : opts.num_entries = g_spdk_nvme_transport_opts.rdma_srq_size;
2885 0 : opts.rqpair = NULL;
2886 0 : opts.srq = poller->srq;
2887 0 : opts.mr_map = poller->mr_map;
2888 :
2889 0 : poller->rsps = nvme_rdma_create_rsps(&opts);
2890 0 : if (poller->rsps == NULL) {
2891 0 : SPDK_ERRLOG("Unable to create poller RDMA responses.\n");
2892 0 : goto fail;
2893 : }
2894 :
2895 0 : rc = nvme_rdma_poller_submit_recvs(poller);
2896 0 : if (rc) {
2897 0 : SPDK_ERRLOG("Unable to submit poller RDMA responses.\n");
2898 0 : goto fail;
2899 : }
2900 :
2901 : /*
2902 : * When using an srq, fix the size of the completion queue at startup.
2903 : * The initiator sends only send and recv WRs. Hence, the multiplier is 2.
2904 : * (The target sends also data WRs. Hence, the multiplier is 3.)
2905 : */
2906 0 : num_cqe = g_spdk_nvme_transport_opts.rdma_srq_size * 2;
2907 : } else {
2908 9 : num_cqe = DEFAULT_NVME_RDMA_CQ_SIZE;
2909 : }
2910 :
2911 9 : max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size;
2912 9 : if (max_num_cqe != 0 && num_cqe > max_num_cqe) {
2913 0 : num_cqe = max_num_cqe;
2914 : }
2915 :
2916 9 : poller->cq = ibv_create_cq(poller->device, num_cqe, group, NULL, 0);
2917 :
2918 9 : if (poller->cq == NULL) {
2919 2 : SPDK_ERRLOG("Unable to create CQ, errno %d.\n", errno);
2920 2 : goto fail;
2921 : }
2922 :
2923 7 : STAILQ_INSERT_HEAD(&group->pollers, poller, link);
2924 7 : group->num_pollers++;
2925 7 : poller->current_num_wc = num_cqe;
2926 7 : poller->required_num_wc = 0;
2927 7 : return poller;
2928 :
2929 2 : fail:
2930 2 : nvme_rdma_poller_destroy(poller);
2931 2 : return NULL;
2932 : }
2933 :
2934 : static void
2935 3 : nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group)
2936 : {
2937 : struct nvme_rdma_poller *poller, *tmp_poller;
2938 :
2939 5 : STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) {
2940 2 : assert(poller->refcnt == 0);
2941 2 : if (poller->refcnt) {
2942 0 : SPDK_WARNLOG("Destroying poller with non-zero ref count: poller %p, refcnt %d\n",
2943 : poller, poller->refcnt);
2944 : }
2945 :
2946 2 : STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
2947 2 : nvme_rdma_poller_destroy(poller);
2948 : }
2949 3 : }
2950 :
2951 : static struct nvme_rdma_poller *
2952 8 : nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, struct ibv_context *device)
2953 : {
2954 8 : struct nvme_rdma_poller *poller = NULL;
2955 :
2956 10 : STAILQ_FOREACH(poller, &group->pollers, link) {
2957 3 : if (poller->device == device) {
2958 1 : break;
2959 : }
2960 : }
2961 :
2962 8 : if (!poller) {
2963 7 : poller = nvme_rdma_poller_create(group, device);
2964 7 : if (!poller) {
2965 2 : SPDK_ERRLOG("Failed to create a poller for device %p\n", device);
2966 2 : return NULL;
2967 : }
2968 : }
2969 :
2970 6 : poller->refcnt++;
2971 6 : return poller;
2972 : }
2973 :
2974 : static void
2975 6 : nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, struct nvme_rdma_poller *poller)
2976 : {
2977 6 : assert(poller->refcnt > 0);
2978 6 : if (--poller->refcnt == 0) {
2979 5 : STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
2980 5 : group->num_pollers--;
2981 5 : nvme_rdma_poller_destroy(poller);
2982 : }
2983 6 : }
2984 :
2985 : static struct spdk_nvme_transport_poll_group *
2986 1 : nvme_rdma_poll_group_create(void)
2987 : {
2988 : struct nvme_rdma_poll_group *group;
2989 :
2990 1 : group = calloc(1, sizeof(*group));
2991 1 : if (group == NULL) {
2992 0 : SPDK_ERRLOG("Unable to allocate poll group.\n");
2993 0 : return NULL;
2994 : }
2995 :
2996 1 : STAILQ_INIT(&group->pollers);
2997 1 : TAILQ_INIT(&group->connecting_qpairs);
2998 1 : TAILQ_INIT(&group->active_qpairs);
2999 1 : return &group->group;
3000 : }
3001 :
3002 : static int
3003 0 : nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
3004 : {
3005 0 : return 0;
3006 : }
3007 :
3008 : static int
3009 0 : nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
3010 : {
3011 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3012 0 : struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
3013 :
3014 0 : if (rqpair->link_connecting.tqe_prev) {
3015 0 : TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting);
3016 : /* We use prev pointer to check if qpair is in connecting list or not .
3017 : * TAILQ_REMOVE doesn't do it. So, we do it manually.
3018 : */
3019 0 : rqpair->link_connecting.tqe_prev = NULL;
3020 : }
3021 :
3022 0 : return 0;
3023 : }
3024 :
3025 : static int
3026 0 : nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
3027 : struct spdk_nvme_qpair *qpair)
3028 : {
3029 0 : return 0;
3030 : }
3031 :
3032 : static int
3033 0 : nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
3034 : struct spdk_nvme_qpair *qpair)
3035 : {
3036 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3037 0 : struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
3038 :
3039 0 : if (rqpair->link_active.tqe_prev) {
3040 0 : TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active);
3041 0 : rqpair->link_active.tqe_prev = NULL;
3042 : }
3043 :
3044 0 : return 0;
3045 : }
3046 :
3047 : static inline void
3048 0 : nvme_rdma_qpair_process_submits(struct nvme_rdma_poll_group *group,
3049 : struct nvme_rdma_qpair *rqpair)
3050 : {
3051 0 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
3052 :
3053 0 : assert(rqpair->link_active.tqe_prev != NULL);
3054 :
3055 0 : if (spdk_unlikely(rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING ||
3056 : rqpair->state >= NVME_RDMA_QPAIR_STATE_EXITING)) {
3057 0 : return;
3058 : }
3059 :
3060 0 : if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
3061 0 : nvme_rdma_qpair_check_timeout(qpair);
3062 : }
3063 :
3064 0 : nvme_rdma_qpair_submit_sends(rqpair);
3065 0 : if (!rqpair->srq) {
3066 0 : nvme_rdma_qpair_submit_recvs(rqpair);
3067 : }
3068 0 : if (rqpair->num_completions > 0) {
3069 0 : nvme_qpair_resubmit_requests(qpair, rqpair->num_completions);
3070 0 : rqpair->num_completions = 0;
3071 : }
3072 :
3073 0 : if (rqpair->num_outstanding_reqs == 0 && STAILQ_EMPTY(&qpair->queued_req)) {
3074 0 : TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active);
3075 : /* We use prev pointer to check if qpair is in active list or not.
3076 : * TAILQ_REMOVE doesn't do it. So, we do it manually.
3077 : */
3078 0 : rqpair->link_active.tqe_prev = NULL;
3079 : }
3080 : }
3081 :
3082 : static int64_t
3083 0 : nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
3084 : uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
3085 : {
3086 : struct spdk_nvme_qpair *qpair, *tmp_qpair;
3087 : struct nvme_rdma_qpair *rqpair, *tmp_rqpair;
3088 : struct nvme_rdma_poll_group *group;
3089 : struct nvme_rdma_poller *poller;
3090 0 : int batch_size, rc, rc2 = 0;
3091 0 : int64_t total_completions = 0;
3092 0 : uint64_t completions_allowed = 0;
3093 0 : uint64_t completions_per_poller = 0;
3094 0 : uint64_t poller_completions = 0;
3095 0 : uint64_t rdma_completions;
3096 :
3097 0 : if (completions_per_qpair == 0) {
3098 0 : completions_per_qpair = MAX_COMPLETIONS_PER_POLL;
3099 : }
3100 :
3101 0 : group = nvme_rdma_poll_group(tgroup);
3102 :
3103 0 : STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
3104 0 : rc = nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
3105 0 : if (rc == 0) {
3106 0 : disconnected_qpair_cb(qpair, tgroup->group->ctx);
3107 : }
3108 : }
3109 :
3110 0 : TAILQ_FOREACH_SAFE(rqpair, &group->connecting_qpairs, link_connecting, tmp_rqpair) {
3111 0 : qpair = &rqpair->qpair;
3112 :
3113 0 : rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
3114 0 : if (rc == 0 || rc != -EAGAIN) {
3115 0 : TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting);
3116 : /* We use prev pointer to check if qpair is in connecting list or not.
3117 : * TAILQ_REMOVE does not do it. So, we do it manually.
3118 : */
3119 0 : rqpair->link_connecting.tqe_prev = NULL;
3120 :
3121 0 : if (rc == 0) {
3122 : /* Once the connection is completed, we can submit queued requests */
3123 0 : nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
3124 0 : } else if (rc != -EAGAIN) {
3125 0 : SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
3126 0 : nvme_rdma_fail_qpair(qpair, 0);
3127 : }
3128 : }
3129 : }
3130 :
3131 0 : STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
3132 0 : rqpair = nvme_rdma_qpair(qpair);
3133 :
3134 0 : if (spdk_likely(nvme_qpair_get_state(qpair) != NVME_QPAIR_CONNECTING)) {
3135 0 : nvme_rdma_qpair_process_cm_event(rqpair);
3136 : }
3137 :
3138 0 : if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
3139 0 : rc2 = -ENXIO;
3140 0 : nvme_rdma_fail_qpair(qpair, 0);
3141 : }
3142 : }
3143 :
3144 0 : completions_allowed = completions_per_qpair * tgroup->num_connected_qpairs;
3145 0 : if (group->num_pollers) {
3146 0 : completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1);
3147 : }
3148 :
3149 0 : STAILQ_FOREACH(poller, &group->pollers, link) {
3150 0 : poller_completions = 0;
3151 0 : rdma_completions = 0;
3152 : do {
3153 0 : poller->stats.polls++;
3154 0 : batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL);
3155 0 : rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, poller, NULL, &rdma_completions);
3156 0 : if (rc <= 0) {
3157 0 : if (rc == -ECANCELED) {
3158 0 : return -EIO;
3159 0 : } else if (rc == 0) {
3160 0 : poller->stats.idle_polls++;
3161 : }
3162 0 : break;
3163 : }
3164 :
3165 0 : poller_completions += rc;
3166 0 : } while (poller_completions < completions_per_poller);
3167 0 : total_completions += poller_completions;
3168 0 : poller->stats.completions += rdma_completions;
3169 0 : if (poller->srq) {
3170 0 : nvme_rdma_poller_submit_recvs(poller);
3171 : }
3172 : }
3173 :
3174 0 : TAILQ_FOREACH_SAFE(rqpair, &group->active_qpairs, link_active, tmp_rqpair) {
3175 0 : nvme_rdma_qpair_process_submits(group, rqpair);
3176 : }
3177 :
3178 0 : return rc2 != 0 ? rc2 : total_completions;
3179 : }
3180 :
3181 : static int
3182 1 : nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
3183 : {
3184 1 : struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup);
3185 :
3186 1 : if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
3187 0 : return -EBUSY;
3188 : }
3189 :
3190 1 : nvme_rdma_poll_group_free_pollers(group);
3191 1 : free(group);
3192 :
3193 1 : return 0;
3194 : }
3195 :
3196 : static int
3197 3 : nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
3198 : struct spdk_nvme_transport_poll_group_stat **_stats)
3199 : {
3200 : struct nvme_rdma_poll_group *group;
3201 : struct spdk_nvme_transport_poll_group_stat *stats;
3202 : struct spdk_nvme_rdma_device_stat *device_stat;
3203 : struct nvme_rdma_poller *poller;
3204 3 : uint32_t i = 0;
3205 :
3206 3 : if (tgroup == NULL || _stats == NULL) {
3207 2 : SPDK_ERRLOG("Invalid stats or group pointer\n");
3208 2 : return -EINVAL;
3209 : }
3210 :
3211 1 : group = nvme_rdma_poll_group(tgroup);
3212 1 : stats = calloc(1, sizeof(*stats));
3213 1 : if (!stats) {
3214 0 : SPDK_ERRLOG("Can't allocate memory for RDMA stats\n");
3215 0 : return -ENOMEM;
3216 : }
3217 1 : stats->trtype = SPDK_NVME_TRANSPORT_RDMA;
3218 1 : stats->rdma.num_devices = group->num_pollers;
3219 :
3220 1 : if (stats->rdma.num_devices == 0) {
3221 0 : *_stats = stats;
3222 0 : return 0;
3223 : }
3224 :
3225 1 : stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats));
3226 1 : if (!stats->rdma.device_stats) {
3227 0 : SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n");
3228 0 : free(stats);
3229 0 : return -ENOMEM;
3230 : }
3231 :
3232 3 : STAILQ_FOREACH(poller, &group->pollers, link) {
3233 2 : device_stat = &stats->rdma.device_stats[i];
3234 2 : device_stat->name = poller->device->device->name;
3235 2 : device_stat->polls = poller->stats.polls;
3236 2 : device_stat->idle_polls = poller->stats.idle_polls;
3237 2 : device_stat->completions = poller->stats.completions;
3238 2 : device_stat->queued_requests = poller->stats.queued_requests;
3239 2 : device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs;
3240 2 : device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates;
3241 2 : device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs;
3242 2 : device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates;
3243 2 : i++;
3244 : }
3245 :
3246 1 : *_stats = stats;
3247 :
3248 1 : return 0;
3249 : }
3250 :
3251 : static void
3252 1 : nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
3253 : struct spdk_nvme_transport_poll_group_stat *stats)
3254 : {
3255 1 : if (stats) {
3256 1 : free(stats->rdma.device_stats);
3257 : }
3258 1 : free(stats);
3259 1 : }
3260 :
3261 : static int
3262 4 : nvme_rdma_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
3263 : struct spdk_memory_domain **domains, int array_size)
3264 : {
3265 4 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(ctrlr->adminq);
3266 :
3267 4 : if (domains && array_size > 0) {
3268 1 : domains[0] = rqpair->memory_domain;
3269 : }
3270 :
3271 4 : return 1;
3272 : }
3273 :
3274 : void
3275 0 : spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
3276 : {
3277 0 : g_nvme_hooks = *hooks;
3278 0 : }
3279 :
3280 : const struct spdk_nvme_transport_ops rdma_ops = {
3281 : .name = "RDMA",
3282 : .type = SPDK_NVME_TRANSPORT_RDMA,
3283 : .ctrlr_construct = nvme_rdma_ctrlr_construct,
3284 : .ctrlr_scan = nvme_fabric_ctrlr_scan,
3285 : .ctrlr_destruct = nvme_rdma_ctrlr_destruct,
3286 : .ctrlr_enable = nvme_rdma_ctrlr_enable,
3287 :
3288 : .ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4,
3289 : .ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8,
3290 : .ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4,
3291 : .ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8,
3292 : .ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async,
3293 : .ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async,
3294 : .ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async,
3295 : .ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async,
3296 :
3297 : .ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size,
3298 : .ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges,
3299 :
3300 : .ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair,
3301 : .ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair,
3302 : .ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair,
3303 : .ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair,
3304 :
3305 : .ctrlr_get_memory_domains = nvme_rdma_ctrlr_get_memory_domains,
3306 :
3307 : .qpair_abort_reqs = nvme_rdma_qpair_abort_reqs,
3308 : .qpair_reset = nvme_rdma_qpair_reset,
3309 : .qpair_submit_request = nvme_rdma_qpair_submit_request,
3310 : .qpair_process_completions = nvme_rdma_qpair_process_completions,
3311 : .qpair_iterate_requests = nvme_rdma_qpair_iterate_requests,
3312 : .admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers,
3313 :
3314 : .poll_group_create = nvme_rdma_poll_group_create,
3315 : .poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair,
3316 : .poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair,
3317 : .poll_group_add = nvme_rdma_poll_group_add,
3318 : .poll_group_remove = nvme_rdma_poll_group_remove,
3319 : .poll_group_process_completions = nvme_rdma_poll_group_process_completions,
3320 : .poll_group_destroy = nvme_rdma_poll_group_destroy,
3321 : .poll_group_get_stats = nvme_rdma_poll_group_get_stats,
3322 : .poll_group_free_stats = nvme_rdma_poll_group_free_stats,
3323 : };
3324 :
3325 1 : SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops);
|