Line data Source code
1 : /* SPDX-License-Identifier: BSD-3-Clause
2 : * Copyright (C) 2016 Intel Corporation. All rights reserved.
3 : * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4 : * Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5 : */
6 :
7 : /*
8 : * NVMe over RDMA transport
9 : */
10 :
11 : #include "spdk/stdinc.h"
12 :
13 : #include "spdk/assert.h"
14 : #include "spdk/dma.h"
15 : #include "spdk/log.h"
16 : #include "spdk/trace.h"
17 : #include "spdk/queue.h"
18 : #include "spdk/nvme.h"
19 : #include "spdk/nvmf_spec.h"
20 : #include "spdk/string.h"
21 : #include "spdk/endian.h"
22 : #include "spdk/likely.h"
23 : #include "spdk/config.h"
24 :
25 : #include "nvme_internal.h"
26 : #include "spdk_internal/rdma_provider.h"
27 : #include "spdk_internal/rdma_utils.h"
28 :
29 : #define NVME_RDMA_TIME_OUT_IN_MS 2000
30 : #define NVME_RDMA_RW_BUFFER_SIZE 131072
31 :
32 : /*
33 : * NVME RDMA qpair Resource Defaults
34 : */
35 : #define NVME_RDMA_DEFAULT_TX_SGE 2
36 : #define NVME_RDMA_DEFAULT_RX_SGE 1
37 :
38 : /* Max number of NVMe-oF SGL descriptors supported by the host */
39 : #define NVME_RDMA_MAX_SGL_DESCRIPTORS 16
40 :
41 : /* number of STAILQ entries for holding pending RDMA CM events. */
42 : #define NVME_RDMA_NUM_CM_EVENTS 256
43 :
44 : /* The default size for a shared rdma completion queue. */
45 : #define DEFAULT_NVME_RDMA_CQ_SIZE 4096
46 :
47 : /*
48 : * In the special case of a stale connection we don't expose a mechanism
49 : * for the user to retry the connection so we need to handle it internally.
50 : */
51 : #define NVME_RDMA_STALE_CONN_RETRY_MAX 5
52 : #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US 10000
53 :
54 : /*
55 : * Maximum value of transport_retry_count used by RDMA controller
56 : */
57 : #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT 7
58 :
59 : /*
60 : * Maximum value of transport_ack_timeout used by RDMA controller
61 : */
62 : #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31
63 :
64 : /*
65 : * Number of microseconds to wait until the lingering qpair becomes quiet.
66 : */
67 : #define NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US 1000000ull
68 :
69 : /*
70 : * The max length of keyed SGL data block (3 bytes)
71 : */
72 : #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1)
73 :
74 : #define WC_PER_QPAIR(queue_depth) (queue_depth * 2)
75 :
76 : #define NVME_RDMA_POLL_GROUP_CHECK_QPN(_rqpair, qpn) \
77 : ((_rqpair)->rdma_qp && (_rqpair)->rdma_qp->qp->qp_num == (qpn)) \
78 :
79 : enum nvme_rdma_wr_type {
80 : RDMA_WR_TYPE_RECV,
81 : RDMA_WR_TYPE_SEND,
82 : };
83 :
84 : struct nvme_rdma_wr {
85 : /* Using this instead of the enum allows this struct to only occupy one byte. */
86 : uint8_t type;
87 : };
88 :
89 : struct spdk_nvmf_cmd {
90 : struct spdk_nvme_cmd cmd;
91 : struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
92 : };
93 :
94 : struct spdk_nvme_rdma_hooks g_nvme_hooks = {};
95 :
96 : /* STAILQ wrapper for cm events. */
97 : struct nvme_rdma_cm_event_entry {
98 : struct rdma_cm_event *evt;
99 : STAILQ_ENTRY(nvme_rdma_cm_event_entry) link;
100 : };
101 :
102 : /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
103 : struct nvme_rdma_ctrlr {
104 : struct spdk_nvme_ctrlr ctrlr;
105 :
106 : uint16_t max_sge;
107 :
108 : struct rdma_event_channel *cm_channel;
109 :
110 : STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events;
111 :
112 : STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events;
113 :
114 : struct nvme_rdma_cm_event_entry *cm_events;
115 : };
116 :
117 : struct nvme_rdma_poller_stats {
118 : uint64_t polls;
119 : uint64_t idle_polls;
120 : uint64_t queued_requests;
121 : uint64_t completions;
122 : struct spdk_rdma_provider_qp_stats rdma_stats;
123 : };
124 :
125 : struct nvme_rdma_poll_group;
126 : struct nvme_rdma_rsps;
127 :
128 : struct nvme_rdma_poller {
129 : struct ibv_context *device;
130 : struct ibv_cq *cq;
131 : struct spdk_rdma_provider_srq *srq;
132 : struct nvme_rdma_rsps *rsps;
133 : struct ibv_pd *pd;
134 : struct spdk_rdma_utils_mem_map *mr_map;
135 : uint32_t refcnt;
136 : int required_num_wc;
137 : int current_num_wc;
138 : struct nvme_rdma_poller_stats stats;
139 : struct nvme_rdma_poll_group *group;
140 : STAILQ_ENTRY(nvme_rdma_poller) link;
141 : };
142 :
143 : struct nvme_rdma_qpair;
144 :
145 : struct nvme_rdma_poll_group {
146 : struct spdk_nvme_transport_poll_group group;
147 : STAILQ_HEAD(, nvme_rdma_poller) pollers;
148 : uint32_t num_pollers;
149 : TAILQ_HEAD(, nvme_rdma_qpair) connecting_qpairs;
150 : TAILQ_HEAD(, nvme_rdma_qpair) active_qpairs;
151 : };
152 :
153 : enum nvme_rdma_qpair_state {
154 : NVME_RDMA_QPAIR_STATE_INVALID = 0,
155 : NVME_RDMA_QPAIR_STATE_STALE_CONN,
156 : NVME_RDMA_QPAIR_STATE_INITIALIZING,
157 : NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND,
158 : NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL,
159 : NVME_RDMA_QPAIR_STATE_AUTHENTICATING,
160 : NVME_RDMA_QPAIR_STATE_RUNNING,
161 : NVME_RDMA_QPAIR_STATE_EXITING,
162 : NVME_RDMA_QPAIR_STATE_LINGERING,
163 : NVME_RDMA_QPAIR_STATE_EXITED,
164 : };
165 :
166 : typedef int (*nvme_rdma_cm_event_cb)(struct nvme_rdma_qpair *rqpair, int ret);
167 :
168 : struct nvme_rdma_rsp_opts {
169 : uint16_t num_entries;
170 : struct nvme_rdma_qpair *rqpair;
171 : struct spdk_rdma_provider_srq *srq;
172 : struct spdk_rdma_utils_mem_map *mr_map;
173 : };
174 :
175 : struct nvme_rdma_rsps {
176 : /* Parallel arrays of response buffers + response SGLs of size num_entries */
177 : struct ibv_sge *rsp_sgls;
178 : struct spdk_nvme_rdma_rsp *rsps;
179 :
180 : struct ibv_recv_wr *rsp_recv_wrs;
181 :
182 : /* Count of outstanding recv objects */
183 : uint16_t current_num_recvs;
184 :
185 : uint16_t num_entries;
186 : };
187 :
188 : /* NVMe RDMA qpair extensions for spdk_nvme_qpair */
189 : struct nvme_rdma_qpair {
190 : struct spdk_nvme_qpair qpair;
191 :
192 : struct spdk_rdma_provider_qp *rdma_qp;
193 : struct rdma_cm_id *cm_id;
194 : struct ibv_cq *cq;
195 : struct spdk_rdma_provider_srq *srq;
196 :
197 : struct spdk_nvme_rdma_req *rdma_reqs;
198 :
199 : uint32_t max_send_sge;
200 :
201 : uint32_t max_recv_sge;
202 :
203 : uint16_t num_entries;
204 :
205 : bool delay_cmd_submit;
206 :
207 : uint32_t num_completions;
208 : uint32_t num_outstanding_reqs;
209 :
210 : struct nvme_rdma_rsps *rsps;
211 :
212 : /*
213 : * Array of num_entries NVMe commands registered as RDMA message buffers.
214 : * Indexed by rdma_req->id.
215 : */
216 : struct spdk_nvmf_cmd *cmds;
217 :
218 : struct spdk_rdma_utils_mem_map *mr_map;
219 :
220 : TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs;
221 : TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs;
222 :
223 : struct spdk_memory_domain *memory_domain;
224 :
225 : /* Count of outstanding send objects */
226 : uint16_t current_num_sends;
227 :
228 : TAILQ_ENTRY(nvme_rdma_qpair) link_active;
229 :
230 : /* Placed at the end of the struct since it is not used frequently */
231 : struct rdma_cm_event *evt;
232 : struct nvme_rdma_poller *poller;
233 :
234 : uint64_t evt_timeout_ticks;
235 : nvme_rdma_cm_event_cb evt_cb;
236 : enum rdma_cm_event_type expected_evt_type;
237 :
238 : enum nvme_rdma_qpair_state state;
239 :
240 : bool in_connect_poll;
241 :
242 : uint8_t stale_conn_retry_count;
243 : bool need_destroy;
244 :
245 : TAILQ_ENTRY(nvme_rdma_qpair) link_connecting;
246 : };
247 :
248 : enum NVME_RDMA_COMPLETION_FLAGS {
249 : NVME_RDMA_SEND_COMPLETED = 1u << 0,
250 : NVME_RDMA_RECV_COMPLETED = 1u << 1,
251 : };
252 :
253 : struct spdk_nvme_rdma_req {
254 : uint16_t id;
255 : uint16_t completion_flags: 2;
256 : uint16_t reserved: 14;
257 : /* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request
258 : * during processing of RDMA_SEND. To complete the request we must know the response
259 : * received in RDMA_RECV, so store it in this field */
260 : struct spdk_nvme_rdma_rsp *rdma_rsp;
261 :
262 : struct nvme_rdma_wr rdma_wr;
263 :
264 : struct ibv_send_wr send_wr;
265 :
266 : struct nvme_request *req;
267 :
268 : struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
269 :
270 : TAILQ_ENTRY(spdk_nvme_rdma_req) link;
271 : };
272 :
273 : struct spdk_nvme_rdma_rsp {
274 : struct spdk_nvme_cpl cpl;
275 : struct nvme_rdma_qpair *rqpair;
276 : struct ibv_recv_wr *recv_wr;
277 : struct nvme_rdma_wr rdma_wr;
278 : };
279 :
280 : struct nvme_rdma_memory_translation_ctx {
281 : void *addr;
282 : size_t length;
283 : uint32_t lkey;
284 : uint32_t rkey;
285 : };
286 :
287 : static const char *rdma_cm_event_str[] = {
288 : "RDMA_CM_EVENT_ADDR_RESOLVED",
289 : "RDMA_CM_EVENT_ADDR_ERROR",
290 : "RDMA_CM_EVENT_ROUTE_RESOLVED",
291 : "RDMA_CM_EVENT_ROUTE_ERROR",
292 : "RDMA_CM_EVENT_CONNECT_REQUEST",
293 : "RDMA_CM_EVENT_CONNECT_RESPONSE",
294 : "RDMA_CM_EVENT_CONNECT_ERROR",
295 : "RDMA_CM_EVENT_UNREACHABLE",
296 : "RDMA_CM_EVENT_REJECTED",
297 : "RDMA_CM_EVENT_ESTABLISHED",
298 : "RDMA_CM_EVENT_DISCONNECTED",
299 : "RDMA_CM_EVENT_DEVICE_REMOVAL",
300 : "RDMA_CM_EVENT_MULTICAST_JOIN",
301 : "RDMA_CM_EVENT_MULTICAST_ERROR",
302 : "RDMA_CM_EVENT_ADDR_CHANGE",
303 : "RDMA_CM_EVENT_TIMEWAIT_EXIT"
304 : };
305 :
306 : static struct nvme_rdma_poller *nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group,
307 : struct ibv_context *device);
308 : static void nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group,
309 : struct nvme_rdma_poller *poller);
310 :
311 : static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
312 : struct spdk_nvme_qpair *qpair);
313 :
314 : static inline struct nvme_rdma_qpair *
315 18 : nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
316 : {
317 18 : assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
318 18 : return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
319 : }
320 :
321 : static inline struct nvme_rdma_poll_group *
322 8 : nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group)
323 : {
324 8 : return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group));
325 : }
326 :
327 : static inline struct nvme_rdma_ctrlr *
328 8 : nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
329 : {
330 8 : assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
331 8 : return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
332 : }
333 :
334 : static struct spdk_nvme_rdma_req *
335 3 : nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
336 : {
337 : struct spdk_nvme_rdma_req *rdma_req;
338 :
339 3 : rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
340 3 : if (rdma_req) {
341 2 : TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
342 : }
343 :
344 3 : return rdma_req;
345 : }
346 :
347 : static void
348 1 : nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
349 : {
350 1 : rdma_req->completion_flags = 0;
351 1 : rdma_req->req = NULL;
352 1 : rdma_req->rdma_rsp = NULL;
353 1 : TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
354 1 : }
355 :
356 : static void
357 0 : nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req,
358 : struct spdk_nvme_cpl *rsp,
359 : bool print_on_error)
360 : {
361 0 : struct nvme_request *req = rdma_req->req;
362 : struct nvme_rdma_qpair *rqpair;
363 : struct spdk_nvme_qpair *qpair;
364 : bool error, print_error;
365 :
366 0 : assert(req != NULL);
367 :
368 0 : qpair = req->qpair;
369 0 : rqpair = nvme_rdma_qpair(qpair);
370 :
371 0 : error = spdk_nvme_cpl_is_error(rsp);
372 0 : print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging;
373 :
374 0 : if (print_error) {
375 0 : spdk_nvme_qpair_print_command(qpair, &req->cmd);
376 : }
377 :
378 0 : if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) {
379 0 : spdk_nvme_qpair_print_completion(qpair, rsp);
380 : }
381 :
382 0 : assert(rqpair->num_outstanding_reqs > 0);
383 0 : rqpair->num_outstanding_reqs--;
384 :
385 0 : TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
386 :
387 0 : nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, rsp);
388 0 : nvme_rdma_req_put(rqpair, rdma_req);
389 0 : }
390 :
391 : static const char *
392 4 : nvme_rdma_cm_event_str_get(uint32_t event)
393 : {
394 4 : if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
395 4 : return rdma_cm_event_str[event];
396 : } else {
397 0 : return "Undefined";
398 : }
399 : }
400 :
401 :
402 : static int
403 12 : nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair)
404 : {
405 12 : struct rdma_cm_event *event = rqpair->evt;
406 : struct spdk_nvmf_rdma_accept_private_data *accept_data;
407 12 : int rc = 0;
408 :
409 12 : if (event) {
410 12 : switch (event->event) {
411 1 : case RDMA_CM_EVENT_ADDR_RESOLVED:
412 : case RDMA_CM_EVENT_ADDR_ERROR:
413 : case RDMA_CM_EVENT_ROUTE_RESOLVED:
414 : case RDMA_CM_EVENT_ROUTE_ERROR:
415 1 : break;
416 1 : case RDMA_CM_EVENT_CONNECT_REQUEST:
417 1 : break;
418 1 : case RDMA_CM_EVENT_CONNECT_ERROR:
419 1 : break;
420 1 : case RDMA_CM_EVENT_UNREACHABLE:
421 : case RDMA_CM_EVENT_REJECTED:
422 1 : break;
423 2 : case RDMA_CM_EVENT_CONNECT_RESPONSE:
424 2 : rc = spdk_rdma_provider_qp_complete_connect(rqpair->rdma_qp);
425 : /* fall through */
426 2 : case RDMA_CM_EVENT_ESTABLISHED:
427 2 : accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
428 2 : if (accept_data == NULL) {
429 1 : rc = -1;
430 : } else {
431 1 : SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Target receive queue depth %d.\n",
432 : rqpair->num_entries + 1, accept_data->crqsize);
433 : }
434 2 : break;
435 1 : case RDMA_CM_EVENT_DISCONNECTED:
436 1 : rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
437 1 : break;
438 1 : case RDMA_CM_EVENT_DEVICE_REMOVAL:
439 1 : rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
440 1 : rqpair->need_destroy = true;
441 1 : break;
442 1 : case RDMA_CM_EVENT_MULTICAST_JOIN:
443 : case RDMA_CM_EVENT_MULTICAST_ERROR:
444 1 : break;
445 1 : case RDMA_CM_EVENT_ADDR_CHANGE:
446 1 : rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
447 1 : break;
448 1 : case RDMA_CM_EVENT_TIMEWAIT_EXIT:
449 1 : break;
450 1 : default:
451 1 : SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
452 1 : break;
453 : }
454 12 : rqpair->evt = NULL;
455 12 : rdma_ack_cm_event(event);
456 : }
457 :
458 12 : return rc;
459 : }
460 :
461 : /*
462 : * This function must be called under the nvme controller's lock
463 : * because it touches global controller variables. The lock is taken
464 : * by the generic transport code before invoking a few of the functions
465 : * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair,
466 : * and conditionally nvme_rdma_qpair_process_completions when it is calling
467 : * completions on the admin qpair. When adding a new call to this function, please
468 : * verify that it is in a situation where it falls under the lock.
469 : */
470 : static int
471 0 : nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr)
472 : {
473 : struct nvme_rdma_cm_event_entry *entry, *tmp;
474 : struct nvme_rdma_qpair *event_qpair;
475 0 : struct rdma_cm_event *event;
476 0 : struct rdma_event_channel *channel = rctrlr->cm_channel;
477 :
478 0 : STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
479 0 : event_qpair = entry->evt->id->context;
480 0 : if (event_qpair->evt == NULL) {
481 0 : event_qpair->evt = entry->evt;
482 0 : STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
483 0 : STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
484 : }
485 : }
486 :
487 0 : while (rdma_get_cm_event(channel, &event) == 0) {
488 0 : event_qpair = event->id->context;
489 0 : if (event_qpair->evt == NULL) {
490 0 : event_qpair->evt = event;
491 : } else {
492 0 : assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr));
493 0 : entry = STAILQ_FIRST(&rctrlr->free_cm_events);
494 0 : if (entry == NULL) {
495 0 : rdma_ack_cm_event(event);
496 0 : return -ENOMEM;
497 : }
498 0 : STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link);
499 0 : entry->evt = event;
500 0 : STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link);
501 : }
502 : }
503 :
504 : /* rdma_get_cm_event() returns -1 on error. If an error occurs, errno
505 : * will be set to indicate the failure reason. So return negated errno here.
506 : */
507 0 : return -errno;
508 : }
509 :
510 : static int
511 4 : nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type,
512 : struct rdma_cm_event *reaped_evt)
513 : {
514 4 : int rc = -EBADMSG;
515 :
516 4 : if (expected_evt_type == reaped_evt->event) {
517 1 : return 0;
518 : }
519 :
520 3 : switch (expected_evt_type) {
521 2 : case RDMA_CM_EVENT_ESTABLISHED:
522 : /*
523 : * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as
524 : * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get
525 : * the same values here.
526 : */
527 2 : if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) {
528 1 : rc = -ESTALE;
529 1 : } else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) {
530 : /*
531 : * If we are using a qpair which is not created using rdma cm API
532 : * then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of
533 : * RDMA_CM_EVENT_ESTABLISHED.
534 : */
535 1 : return 0;
536 : }
537 1 : break;
538 1 : default:
539 1 : break;
540 : }
541 :
542 2 : SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
543 : nvme_rdma_cm_event_str_get(expected_evt_type),
544 : nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event,
545 : reaped_evt->status);
546 2 : return rc;
547 : }
548 :
549 : static int
550 0 : nvme_rdma_process_event_start(struct nvme_rdma_qpair *rqpair,
551 : enum rdma_cm_event_type evt,
552 : nvme_rdma_cm_event_cb evt_cb)
553 : {
554 : int rc;
555 :
556 0 : assert(evt_cb != NULL);
557 :
558 0 : if (rqpair->evt != NULL) {
559 0 : rc = nvme_rdma_qpair_process_cm_event(rqpair);
560 0 : if (rc) {
561 0 : return rc;
562 : }
563 : }
564 :
565 0 : rqpair->expected_evt_type = evt;
566 0 : rqpair->evt_cb = evt_cb;
567 0 : rqpair->evt_timeout_ticks = (g_spdk_nvme_transport_opts.rdma_cm_event_timeout_ms * 1000 *
568 0 : spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC + spdk_get_ticks();
569 :
570 0 : return 0;
571 : }
572 :
573 : static int
574 0 : nvme_rdma_process_event_poll(struct nvme_rdma_qpair *rqpair)
575 : {
576 : struct nvme_rdma_ctrlr *rctrlr;
577 0 : int rc = 0, rc2;
578 :
579 0 : rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
580 0 : assert(rctrlr != NULL);
581 :
582 0 : if (!rqpair->evt && spdk_get_ticks() < rqpair->evt_timeout_ticks) {
583 0 : rc = nvme_rdma_poll_events(rctrlr);
584 0 : if (rc == -EAGAIN || rc == -EWOULDBLOCK) {
585 0 : return rc;
586 : }
587 : }
588 :
589 0 : if (rqpair->evt == NULL) {
590 0 : rc = -EADDRNOTAVAIL;
591 0 : goto exit;
592 : }
593 :
594 0 : rc = nvme_rdma_validate_cm_event(rqpair->expected_evt_type, rqpair->evt);
595 :
596 0 : rc2 = nvme_rdma_qpair_process_cm_event(rqpair);
597 : /* bad message takes precedence over the other error codes from processing the event. */
598 0 : rc = rc == 0 ? rc2 : rc;
599 :
600 0 : exit:
601 0 : assert(rqpair->evt_cb != NULL);
602 0 : return rqpair->evt_cb(rqpair, rc);
603 : }
604 :
605 : static int
606 3 : nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller)
607 : {
608 : int current_num_wc, required_num_wc;
609 : int max_cq_size;
610 :
611 3 : required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries);
612 3 : current_num_wc = poller->current_num_wc;
613 3 : if (current_num_wc < required_num_wc) {
614 2 : current_num_wc = spdk_max(current_num_wc * 2, required_num_wc);
615 : }
616 :
617 3 : max_cq_size = g_spdk_nvme_transport_opts.rdma_max_cq_size;
618 3 : if (max_cq_size != 0 && current_num_wc > max_cq_size) {
619 0 : current_num_wc = max_cq_size;
620 : }
621 :
622 3 : if (poller->current_num_wc != current_num_wc) {
623 2 : SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc,
624 : current_num_wc);
625 2 : if (ibv_resize_cq(poller->cq, current_num_wc)) {
626 1 : SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
627 1 : return -1;
628 : }
629 :
630 1 : poller->current_num_wc = current_num_wc;
631 : }
632 :
633 2 : poller->required_num_wc = required_num_wc;
634 2 : return 0;
635 : }
636 :
637 : static int
638 5 : nvme_rdma_qpair_set_poller(struct spdk_nvme_qpair *qpair)
639 : {
640 5 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
641 5 : struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
642 : struct nvme_rdma_poller *poller;
643 :
644 5 : assert(rqpair->cq == NULL);
645 :
646 5 : poller = nvme_rdma_poll_group_get_poller(group, rqpair->cm_id->verbs);
647 5 : if (!poller) {
648 2 : SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group);
649 2 : return -EINVAL;
650 : }
651 :
652 3 : if (!poller->srq) {
653 3 : if (nvme_rdma_resize_cq(rqpair, poller)) {
654 1 : nvme_rdma_poll_group_put_poller(group, poller);
655 1 : return -EPROTO;
656 : }
657 : }
658 :
659 2 : rqpair->cq = poller->cq;
660 2 : rqpair->srq = poller->srq;
661 2 : if (rqpair->srq) {
662 0 : rqpair->rsps = poller->rsps;
663 : }
664 2 : rqpair->poller = poller;
665 2 : return 0;
666 : }
667 :
668 : static int
669 1 : nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
670 : {
671 : int rc;
672 1 : struct spdk_rdma_provider_qp_init_attr attr = {};
673 1 : struct ibv_device_attr dev_attr;
674 : struct nvme_rdma_ctrlr *rctrlr;
675 : uint32_t num_cqe, max_num_cqe;
676 :
677 1 : rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr);
678 1 : if (rc != 0) {
679 0 : SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
680 0 : return -1;
681 : }
682 :
683 1 : if (rqpair->qpair.poll_group) {
684 0 : assert(!rqpair->cq);
685 0 : rc = nvme_rdma_qpair_set_poller(&rqpair->qpair);
686 0 : if (rc) {
687 0 : SPDK_ERRLOG("Unable to activate the rdmaqpair.\n");
688 0 : return -1;
689 : }
690 0 : assert(rqpair->cq);
691 : } else {
692 1 : num_cqe = rqpair->num_entries * 2;
693 1 : max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size;
694 1 : if (max_num_cqe != 0 && num_cqe > max_num_cqe) {
695 0 : num_cqe = max_num_cqe;
696 : }
697 1 : rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, num_cqe, rqpair, NULL, 0);
698 1 : if (!rqpair->cq) {
699 0 : SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
700 0 : return -1;
701 : }
702 : }
703 :
704 1 : rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
705 1 : if (g_nvme_hooks.get_ibv_pd) {
706 0 : attr.pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs);
707 : } else {
708 1 : attr.pd = spdk_rdma_utils_get_pd(rqpair->cm_id->verbs);
709 : }
710 :
711 1 : attr.stats = rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL;
712 1 : attr.send_cq = rqpair->cq;
713 1 : attr.recv_cq = rqpair->cq;
714 1 : attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */
715 1 : if (rqpair->srq) {
716 0 : attr.srq = rqpair->srq->srq;
717 : } else {
718 1 : attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */
719 : }
720 1 : attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge);
721 1 : attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge);
722 :
723 1 : rqpair->rdma_qp = spdk_rdma_provider_qp_create(rqpair->cm_id, &attr);
724 :
725 1 : if (!rqpair->rdma_qp) {
726 0 : return -1;
727 : }
728 :
729 1 : rqpair->memory_domain = spdk_rdma_utils_get_memory_domain(rqpair->rdma_qp->qp->pd);
730 1 : if (!rqpair->memory_domain) {
731 0 : SPDK_ERRLOG("Failed to get memory domain\n");
732 0 : return -1;
733 : }
734 :
735 : /* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */
736 1 : rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge);
737 1 : rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge);
738 1 : rqpair->current_num_sends = 0;
739 :
740 1 : rqpair->cm_id->context = rqpair;
741 :
742 1 : return 0;
743 : }
744 :
745 : static void
746 0 : nvme_rdma_reset_failed_sends(struct nvme_rdma_qpair *rqpair,
747 : struct ibv_send_wr *bad_send_wr, int rc)
748 : {
749 0 : SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n",
750 : rc, spdk_strerror(rc), bad_send_wr);
751 0 : while (bad_send_wr != NULL) {
752 0 : assert(rqpair->current_num_sends > 0);
753 0 : rqpair->current_num_sends--;
754 0 : bad_send_wr = bad_send_wr->next;
755 : }
756 0 : }
757 :
758 : static void
759 0 : nvme_rdma_reset_failed_recvs(struct nvme_rdma_rsps *rsps,
760 : struct ibv_recv_wr *bad_recv_wr, int rc)
761 : {
762 0 : SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n",
763 : rc, spdk_strerror(rc), bad_recv_wr);
764 0 : while (bad_recv_wr != NULL) {
765 0 : assert(rsps->current_num_recvs > 0);
766 0 : rsps->current_num_recvs--;
767 0 : bad_recv_wr = bad_recv_wr->next;
768 : }
769 0 : }
770 :
771 : static inline int
772 1 : nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair)
773 : {
774 1 : struct ibv_send_wr *bad_send_wr = NULL;
775 : int rc;
776 :
777 1 : rc = spdk_rdma_provider_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr);
778 :
779 1 : if (spdk_unlikely(rc)) {
780 0 : nvme_rdma_reset_failed_sends(rqpair, bad_send_wr, rc);
781 : }
782 :
783 1 : return rc;
784 : }
785 :
786 : static inline int
787 0 : nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair)
788 : {
789 0 : struct ibv_recv_wr *bad_recv_wr;
790 0 : int rc = 0;
791 :
792 0 : rc = spdk_rdma_provider_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
793 0 : if (spdk_unlikely(rc)) {
794 0 : nvme_rdma_reset_failed_recvs(rqpair->rsps, bad_recv_wr, rc);
795 : }
796 :
797 0 : return rc;
798 : }
799 :
800 : static inline int
801 0 : nvme_rdma_poller_submit_recvs(struct nvme_rdma_poller *poller)
802 : {
803 0 : struct ibv_recv_wr *bad_recv_wr;
804 : int rc;
805 :
806 0 : rc = spdk_rdma_provider_srq_flush_recv_wrs(poller->srq, &bad_recv_wr);
807 0 : if (spdk_unlikely(rc)) {
808 0 : nvme_rdma_reset_failed_recvs(poller->rsps, bad_recv_wr, rc);
809 : }
810 :
811 0 : return rc;
812 : }
813 :
814 : #define nvme_rdma_trace_ibv_sge(sg_list) \
815 : if (sg_list) { \
816 : SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \
817 : (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
818 : }
819 :
820 : static void
821 3 : nvme_rdma_free_rsps(struct nvme_rdma_rsps *rsps)
822 : {
823 3 : if (!rsps) {
824 1 : return;
825 : }
826 :
827 2 : spdk_free(rsps->rsps);
828 2 : spdk_free(rsps->rsp_sgls);
829 2 : spdk_free(rsps->rsp_recv_wrs);
830 2 : spdk_free(rsps);
831 : }
832 :
833 : static struct nvme_rdma_rsps *
834 2 : nvme_rdma_create_rsps(struct nvme_rdma_rsp_opts *opts)
835 : {
836 : struct nvme_rdma_rsps *rsps;
837 2 : struct spdk_rdma_utils_memory_translation translation;
838 : uint16_t i;
839 : int rc;
840 :
841 2 : rsps = spdk_zmalloc(sizeof(*rsps), 0, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
842 2 : if (!rsps) {
843 0 : SPDK_ERRLOG("Failed to allocate rsps object\n");
844 0 : return NULL;
845 : }
846 :
847 2 : rsps->rsp_sgls = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_sgls), 0, NULL,
848 : SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
849 2 : if (!rsps->rsp_sgls) {
850 1 : SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
851 1 : goto fail;
852 : }
853 :
854 1 : rsps->rsp_recv_wrs = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_recv_wrs), 0, NULL,
855 : SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
856 1 : if (!rsps->rsp_recv_wrs) {
857 0 : SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
858 0 : goto fail;
859 : }
860 :
861 1 : rsps->rsps = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsps), 0, NULL,
862 : SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
863 1 : if (!rsps->rsps) {
864 0 : SPDK_ERRLOG("can not allocate rdma rsps\n");
865 0 : goto fail;
866 : }
867 :
868 2 : for (i = 0; i < opts->num_entries; i++) {
869 1 : struct ibv_sge *rsp_sgl = &rsps->rsp_sgls[i];
870 1 : struct spdk_nvme_rdma_rsp *rsp = &rsps->rsps[i];
871 1 : struct ibv_recv_wr *recv_wr = &rsps->rsp_recv_wrs[i];
872 :
873 1 : rsp->rqpair = opts->rqpair;
874 1 : rsp->rdma_wr.type = RDMA_WR_TYPE_RECV;
875 1 : rsp->recv_wr = recv_wr;
876 1 : rsp_sgl->addr = (uint64_t)rsp;
877 1 : rsp_sgl->length = sizeof(struct spdk_nvme_cpl);
878 1 : rc = spdk_rdma_utils_get_translation(opts->mr_map, rsp, sizeof(*rsp), &translation);
879 1 : if (rc) {
880 0 : goto fail;
881 : }
882 1 : rsp_sgl->lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
883 :
884 1 : recv_wr->wr_id = (uint64_t)&rsp->rdma_wr;
885 1 : recv_wr->next = NULL;
886 1 : recv_wr->sg_list = rsp_sgl;
887 1 : recv_wr->num_sge = 1;
888 :
889 1 : nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
890 :
891 1 : if (opts->rqpair) {
892 1 : spdk_rdma_provider_qp_queue_recv_wrs(opts->rqpair->rdma_qp, recv_wr);
893 : } else {
894 0 : spdk_rdma_provider_srq_queue_recv_wrs(opts->srq, recv_wr);
895 : }
896 : }
897 :
898 1 : rsps->num_entries = opts->num_entries;
899 1 : rsps->current_num_recvs = opts->num_entries;
900 :
901 1 : return rsps;
902 1 : fail:
903 1 : nvme_rdma_free_rsps(rsps);
904 1 : return NULL;
905 : }
906 :
907 : static void
908 3 : nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
909 : {
910 3 : if (!rqpair->rdma_reqs) {
911 2 : return;
912 : }
913 :
914 1 : spdk_free(rqpair->cmds);
915 1 : rqpair->cmds = NULL;
916 :
917 1 : spdk_free(rqpair->rdma_reqs);
918 1 : rqpair->rdma_reqs = NULL;
919 : }
920 :
921 : static int
922 4 : nvme_rdma_create_reqs(struct nvme_rdma_qpair *rqpair)
923 : {
924 4 : struct spdk_rdma_utils_memory_translation translation;
925 : uint16_t i;
926 : int rc;
927 :
928 4 : assert(!rqpair->rdma_reqs);
929 4 : rqpair->rdma_reqs = spdk_zmalloc(rqpair->num_entries * sizeof(struct spdk_nvme_rdma_req), 0, NULL,
930 : SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
931 4 : if (rqpair->rdma_reqs == NULL) {
932 1 : SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
933 1 : goto fail;
934 : }
935 :
936 3 : assert(!rqpair->cmds);
937 3 : rqpair->cmds = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->cmds), 0, NULL,
938 : SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
939 3 : if (!rqpair->cmds) {
940 0 : SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
941 0 : goto fail;
942 : }
943 :
944 3 : TAILQ_INIT(&rqpair->free_reqs);
945 3 : TAILQ_INIT(&rqpair->outstanding_reqs);
946 10 : for (i = 0; i < rqpair->num_entries; i++) {
947 : struct spdk_nvme_rdma_req *rdma_req;
948 : struct spdk_nvmf_cmd *cmd;
949 :
950 7 : rdma_req = &rqpair->rdma_reqs[i];
951 7 : rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND;
952 7 : cmd = &rqpair->cmds[i];
953 :
954 7 : rdma_req->id = i;
955 :
956 7 : rc = spdk_rdma_utils_get_translation(rqpair->mr_map, cmd, sizeof(*cmd), &translation);
957 7 : if (rc) {
958 0 : goto fail;
959 : }
960 7 : rdma_req->send_sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
961 :
962 : /* The first RDMA sgl element will always point
963 : * at this data structure. Depending on whether
964 : * an NVMe-oF SGL is required, the length of
965 : * this element may change. */
966 7 : rdma_req->send_sgl[0].addr = (uint64_t)cmd;
967 7 : rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr;
968 7 : rdma_req->send_wr.next = NULL;
969 7 : rdma_req->send_wr.opcode = IBV_WR_SEND;
970 7 : rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
971 7 : rdma_req->send_wr.sg_list = rdma_req->send_sgl;
972 7 : rdma_req->send_wr.imm_data = 0;
973 :
974 7 : TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
975 : }
976 :
977 3 : return 0;
978 1 : fail:
979 1 : nvme_rdma_free_reqs(rqpair);
980 1 : return -ENOMEM;
981 : }
982 :
983 : static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair);
984 :
985 : static int
986 0 : nvme_rdma_route_resolved(struct nvme_rdma_qpair *rqpair, int ret)
987 : {
988 0 : if (ret) {
989 0 : SPDK_ERRLOG("RDMA route resolution error\n");
990 0 : return -1;
991 : }
992 :
993 0 : ret = nvme_rdma_qpair_init(rqpair);
994 0 : if (ret < 0) {
995 0 : SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
996 0 : return -1;
997 : }
998 :
999 0 : return nvme_rdma_connect(rqpair);
1000 : }
1001 :
1002 : static int
1003 0 : nvme_rdma_addr_resolved(struct nvme_rdma_qpair *rqpair, int ret)
1004 : {
1005 0 : if (ret) {
1006 0 : SPDK_ERRLOG("RDMA address resolution error\n");
1007 0 : return -1;
1008 : }
1009 :
1010 0 : if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) {
1011 : #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT
1012 0 : uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout;
1013 0 : ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID,
1014 : RDMA_OPTION_ID_ACK_TIMEOUT,
1015 : &timeout, sizeof(timeout));
1016 0 : if (ret) {
1017 0 : SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret);
1018 : }
1019 : #else
1020 : SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n");
1021 : #endif
1022 : }
1023 :
1024 0 : if (rqpair->qpair.ctrlr->opts.transport_tos != SPDK_NVME_TRANSPORT_TOS_DISABLED) {
1025 : #ifdef SPDK_CONFIG_RDMA_SET_TOS
1026 0 : uint8_t tos = rqpair->qpair.ctrlr->opts.transport_tos;
1027 0 : ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_TOS, &tos, sizeof(tos));
1028 0 : if (ret) {
1029 0 : SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_TOS %u, ret %d\n", tos, ret);
1030 : }
1031 : #else
1032 : SPDK_DEBUGLOG(nvme, "transport_tos is not supported\n");
1033 : #endif
1034 : }
1035 :
1036 0 : ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
1037 0 : if (ret) {
1038 0 : SPDK_ERRLOG("rdma_resolve_route\n");
1039 0 : return ret;
1040 : }
1041 :
1042 0 : return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ROUTE_RESOLVED,
1043 : nvme_rdma_route_resolved);
1044 : }
1045 :
1046 : static int
1047 0 : nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
1048 : struct sockaddr *src_addr,
1049 : struct sockaddr *dst_addr)
1050 : {
1051 : int ret;
1052 :
1053 0 : if (src_addr) {
1054 0 : int reuse = 1;
1055 :
1056 0 : ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
1057 : &reuse, sizeof(reuse));
1058 0 : if (ret) {
1059 0 : SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_REUSEADDR %d, ret %d\n",
1060 : reuse, ret);
1061 : /* It is likely that rdma_resolve_addr() returns -EADDRINUSE, but
1062 : * we may missing something. We rely on rdma_resolve_addr().
1063 : */
1064 : }
1065 : }
1066 :
1067 0 : ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
1068 : NVME_RDMA_TIME_OUT_IN_MS);
1069 0 : if (ret) {
1070 0 : SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
1071 0 : return ret;
1072 : }
1073 :
1074 0 : return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ADDR_RESOLVED,
1075 : nvme_rdma_addr_resolved);
1076 : }
1077 :
1078 : static int nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair);
1079 :
1080 : static int
1081 0 : nvme_rdma_connect_established(struct nvme_rdma_qpair *rqpair, int ret)
1082 : {
1083 0 : struct nvme_rdma_rsp_opts opts = {};
1084 :
1085 0 : if (ret == -ESTALE) {
1086 0 : return nvme_rdma_stale_conn_retry(rqpair);
1087 0 : } else if (ret) {
1088 0 : SPDK_ERRLOG("RDMA connect error %d\n", ret);
1089 0 : return ret;
1090 : }
1091 :
1092 0 : assert(!rqpair->mr_map);
1093 0 : rqpair->mr_map = spdk_rdma_utils_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks,
1094 : IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE);
1095 0 : if (!rqpair->mr_map) {
1096 0 : SPDK_ERRLOG("Unable to register RDMA memory translation map\n");
1097 0 : return -1;
1098 : }
1099 :
1100 0 : ret = nvme_rdma_create_reqs(rqpair);
1101 0 : SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1102 0 : if (ret) {
1103 0 : SPDK_ERRLOG("Unable to create rqpair RDMA requests\n");
1104 0 : return -1;
1105 : }
1106 0 : SPDK_DEBUGLOG(nvme, "RDMA requests created\n");
1107 :
1108 0 : if (!rqpair->srq) {
1109 0 : opts.num_entries = rqpair->num_entries;
1110 0 : opts.rqpair = rqpair;
1111 0 : opts.srq = NULL;
1112 0 : opts.mr_map = rqpair->mr_map;
1113 :
1114 0 : assert(!rqpair->rsps);
1115 0 : rqpair->rsps = nvme_rdma_create_rsps(&opts);
1116 0 : if (!rqpair->rsps) {
1117 0 : SPDK_ERRLOG("Unable to create rqpair RDMA responses\n");
1118 0 : return -1;
1119 : }
1120 0 : SPDK_DEBUGLOG(nvme, "RDMA responses created\n");
1121 :
1122 0 : ret = nvme_rdma_qpair_submit_recvs(rqpair);
1123 0 : SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1124 0 : if (ret) {
1125 0 : SPDK_ERRLOG("Unable to submit rqpair RDMA responses\n");
1126 0 : return -1;
1127 : }
1128 0 : SPDK_DEBUGLOG(nvme, "RDMA responses submitted\n");
1129 : }
1130 :
1131 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND;
1132 :
1133 0 : return 0;
1134 : }
1135 :
1136 : static int
1137 0 : nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
1138 : {
1139 0 : struct rdma_conn_param param = {};
1140 0 : struct spdk_nvmf_rdma_request_private_data request_data = {};
1141 0 : struct ibv_device_attr attr;
1142 : int ret;
1143 : struct spdk_nvme_ctrlr *ctrlr;
1144 :
1145 0 : ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
1146 0 : if (ret != 0) {
1147 0 : SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
1148 0 : return ret;
1149 : }
1150 :
1151 0 : param.responder_resources = attr.max_qp_rd_atom;
1152 :
1153 0 : ctrlr = rqpair->qpair.ctrlr;
1154 0 : if (!ctrlr) {
1155 0 : return -1;
1156 : }
1157 :
1158 0 : request_data.qid = rqpair->qpair.id;
1159 0 : request_data.hrqsize = rqpair->num_entries + 1;
1160 0 : request_data.hsqsize = rqpair->num_entries;
1161 0 : request_data.cntlid = ctrlr->cntlid;
1162 :
1163 0 : param.private_data = &request_data;
1164 0 : param.private_data_len = sizeof(request_data);
1165 0 : param.retry_count = ctrlr->opts.transport_retry_count;
1166 0 : param.rnr_retry_count = 7;
1167 :
1168 : /* Fields below are ignored by rdma cm if qpair has been
1169 : * created using rdma cm API. */
1170 0 : param.srq = 0;
1171 0 : param.qp_num = rqpair->rdma_qp->qp->qp_num;
1172 :
1173 0 : ret = rdma_connect(rqpair->cm_id, ¶m);
1174 0 : if (ret) {
1175 0 : SPDK_ERRLOG("nvme rdma connect error\n");
1176 0 : return ret;
1177 : }
1178 :
1179 0 : ctrlr->numa.id_valid = 1;
1180 0 : ctrlr->numa.id = spdk_rdma_cm_id_get_numa_id(rqpair->cm_id);
1181 :
1182 0 : return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ESTABLISHED,
1183 : nvme_rdma_connect_established);
1184 : }
1185 :
1186 : static int
1187 0 : nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1188 : {
1189 0 : struct sockaddr_storage dst_addr;
1190 0 : struct sockaddr_storage src_addr;
1191 : bool src_addr_specified;
1192 0 : long int port, src_port = 0;
1193 : int rc;
1194 : struct nvme_rdma_ctrlr *rctrlr;
1195 : struct nvme_rdma_qpair *rqpair;
1196 : struct nvme_rdma_poll_group *group;
1197 : int family;
1198 :
1199 0 : rqpair = nvme_rdma_qpair(qpair);
1200 0 : rctrlr = nvme_rdma_ctrlr(ctrlr);
1201 0 : assert(rctrlr != NULL);
1202 :
1203 0 : switch (ctrlr->trid.adrfam) {
1204 0 : case SPDK_NVMF_ADRFAM_IPV4:
1205 0 : family = AF_INET;
1206 0 : break;
1207 0 : case SPDK_NVMF_ADRFAM_IPV6:
1208 0 : family = AF_INET6;
1209 0 : break;
1210 0 : default:
1211 0 : SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
1212 0 : return -1;
1213 : }
1214 :
1215 0 : SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
1216 :
1217 0 : memset(&dst_addr, 0, sizeof(dst_addr));
1218 :
1219 0 : SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid);
1220 0 : rc = nvme_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid, &port);
1221 0 : if (rc != 0) {
1222 0 : SPDK_ERRLOG("dst_addr nvme_parse_addr() failed\n");
1223 0 : return -1;
1224 : }
1225 :
1226 0 : if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
1227 0 : memset(&src_addr, 0, sizeof(src_addr));
1228 0 : rc = nvme_parse_addr(&src_addr, family,
1229 0 : ctrlr->opts.src_addr[0] ? ctrlr->opts.src_addr : NULL,
1230 0 : ctrlr->opts.src_svcid[0] ? ctrlr->opts.src_svcid : NULL,
1231 : &src_port);
1232 0 : if (rc != 0) {
1233 0 : SPDK_ERRLOG("src_addr nvme_parse_addr() failed\n");
1234 0 : return -1;
1235 : }
1236 0 : src_addr_specified = true;
1237 : } else {
1238 0 : src_addr_specified = false;
1239 : }
1240 :
1241 0 : rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
1242 0 : if (rc < 0) {
1243 0 : SPDK_ERRLOG("rdma_create_id() failed\n");
1244 0 : return -1;
1245 : }
1246 :
1247 0 : rc = nvme_rdma_resolve_addr(rqpair,
1248 : src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
1249 : (struct sockaddr *)&dst_addr);
1250 0 : if (rc < 0) {
1251 0 : SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
1252 0 : return -1;
1253 : }
1254 :
1255 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_INITIALIZING;
1256 :
1257 0 : if (qpair->poll_group != NULL) {
1258 0 : group = nvme_rdma_poll_group(qpair->poll_group);
1259 0 : TAILQ_INSERT_TAIL(&group->connecting_qpairs, rqpair, link_connecting);
1260 : }
1261 :
1262 0 : return 0;
1263 : }
1264 :
1265 : static int
1266 0 : nvme_rdma_stale_conn_reconnect(struct nvme_rdma_qpair *rqpair)
1267 : {
1268 0 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1269 :
1270 0 : if (spdk_get_ticks() < rqpair->evt_timeout_ticks) {
1271 0 : return -EAGAIN;
1272 : }
1273 :
1274 0 : return nvme_rdma_ctrlr_connect_qpair(qpair->ctrlr, qpair);
1275 : }
1276 :
1277 : static int
1278 0 : nvme_rdma_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr,
1279 : struct spdk_nvme_qpair *qpair)
1280 : {
1281 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1282 : int rc;
1283 :
1284 0 : if (rqpair->in_connect_poll) {
1285 0 : return -EAGAIN;
1286 : }
1287 :
1288 0 : rqpair->in_connect_poll = true;
1289 :
1290 0 : switch (rqpair->state) {
1291 0 : case NVME_RDMA_QPAIR_STATE_INVALID:
1292 0 : rc = -EAGAIN;
1293 0 : break;
1294 :
1295 0 : case NVME_RDMA_QPAIR_STATE_INITIALIZING:
1296 : case NVME_RDMA_QPAIR_STATE_EXITING:
1297 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1298 0 : nvme_ctrlr_lock(ctrlr);
1299 : }
1300 :
1301 0 : rc = nvme_rdma_process_event_poll(rqpair);
1302 :
1303 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1304 0 : nvme_ctrlr_unlock(ctrlr);
1305 : }
1306 :
1307 0 : if (rc == 0) {
1308 0 : rc = -EAGAIN;
1309 : }
1310 0 : rqpair->in_connect_poll = false;
1311 :
1312 0 : return rc;
1313 :
1314 0 : case NVME_RDMA_QPAIR_STATE_STALE_CONN:
1315 0 : rc = nvme_rdma_stale_conn_reconnect(rqpair);
1316 0 : if (rc == 0) {
1317 0 : rc = -EAGAIN;
1318 : }
1319 0 : break;
1320 0 : case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND:
1321 0 : rc = nvme_fabric_qpair_connect_async(qpair, rqpair->num_entries + 1);
1322 0 : if (rc == 0) {
1323 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL;
1324 0 : rc = -EAGAIN;
1325 : } else {
1326 0 : SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
1327 : }
1328 0 : break;
1329 0 : case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL:
1330 0 : rc = nvme_fabric_qpair_connect_poll(qpair);
1331 0 : if (rc == 0) {
1332 0 : if (nvme_fabric_qpair_auth_required(qpair)) {
1333 0 : rc = nvme_fabric_qpair_authenticate_async(qpair);
1334 0 : if (rc == 0) {
1335 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_AUTHENTICATING;
1336 0 : rc = -EAGAIN;
1337 : }
1338 : } else {
1339 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING;
1340 0 : nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
1341 : }
1342 0 : } else if (rc != -EAGAIN) {
1343 0 : SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n");
1344 : }
1345 0 : break;
1346 0 : case NVME_RDMA_QPAIR_STATE_AUTHENTICATING:
1347 0 : rc = nvme_fabric_qpair_authenticate_poll(qpair);
1348 0 : if (rc == 0) {
1349 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING;
1350 0 : nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
1351 : }
1352 0 : break;
1353 0 : case NVME_RDMA_QPAIR_STATE_RUNNING:
1354 0 : rc = 0;
1355 0 : break;
1356 0 : default:
1357 0 : assert(false);
1358 : rc = -EINVAL;
1359 : break;
1360 : }
1361 :
1362 0 : rqpair->in_connect_poll = false;
1363 :
1364 0 : return rc;
1365 : }
1366 :
1367 : static inline int
1368 28 : nvme_rdma_get_memory_translation(struct nvme_request *req, struct nvme_rdma_qpair *rqpair,
1369 : struct nvme_rdma_memory_translation_ctx *_ctx)
1370 : {
1371 28 : struct spdk_memory_domain_translation_ctx ctx;
1372 28 : struct spdk_memory_domain_translation_result dma_translation = {.iov_count = 0};
1373 28 : struct spdk_rdma_utils_memory_translation rdma_translation;
1374 : int rc;
1375 :
1376 28 : assert(req);
1377 28 : assert(rqpair);
1378 28 : assert(_ctx);
1379 :
1380 28 : if (req->payload.opts && req->payload.opts->memory_domain) {
1381 2 : ctx.size = sizeof(struct spdk_memory_domain_translation_ctx);
1382 2 : ctx.rdma.ibv_qp = rqpair->rdma_qp->qp;
1383 2 : dma_translation.size = sizeof(struct spdk_memory_domain_translation_result);
1384 :
1385 4 : rc = spdk_memory_domain_translate_data(req->payload.opts->memory_domain,
1386 2 : req->payload.opts->memory_domain_ctx,
1387 : rqpair->memory_domain, &ctx, _ctx->addr,
1388 : _ctx->length, &dma_translation);
1389 2 : if (spdk_unlikely(rc) || dma_translation.iov_count != 1) {
1390 1 : SPDK_ERRLOG("DMA memory translation failed, rc %d, iov count %u\n", rc, dma_translation.iov_count);
1391 1 : return rc;
1392 : }
1393 :
1394 1 : _ctx->lkey = dma_translation.rdma.lkey;
1395 1 : _ctx->rkey = dma_translation.rdma.rkey;
1396 1 : _ctx->addr = dma_translation.iov.iov_base;
1397 1 : _ctx->length = dma_translation.iov.iov_len;
1398 : } else {
1399 26 : rc = spdk_rdma_utils_get_translation(rqpair->mr_map, _ctx->addr, _ctx->length, &rdma_translation);
1400 26 : if (spdk_unlikely(rc)) {
1401 2 : SPDK_ERRLOG("RDMA memory translation failed, rc %d\n", rc);
1402 2 : return rc;
1403 : }
1404 24 : if (rdma_translation.translation_type == SPDK_RDMA_UTILS_TRANSLATION_MR) {
1405 24 : _ctx->lkey = rdma_translation.mr_or_key.mr->lkey;
1406 24 : _ctx->rkey = rdma_translation.mr_or_key.mr->rkey;
1407 : } else {
1408 0 : _ctx->lkey = _ctx->rkey = (uint32_t)rdma_translation.mr_or_key.key;
1409 : }
1410 : }
1411 :
1412 25 : return 0;
1413 : }
1414 :
1415 :
1416 : /*
1417 : * Build SGL describing empty payload.
1418 : */
1419 : static int
1420 2 : nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
1421 : {
1422 2 : struct nvme_request *req = rdma_req->req;
1423 :
1424 2 : req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1425 :
1426 : /* The first element of this SGL is pointing at an
1427 : * spdk_nvmf_cmd object. For this particular command,
1428 : * we only need the first 64 bytes corresponding to
1429 : * the NVMe command. */
1430 2 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1431 :
1432 : /* The RDMA SGL needs one element describing the NVMe command. */
1433 2 : rdma_req->send_wr.num_sge = 1;
1434 :
1435 2 : req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1436 2 : req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1437 2 : req->cmd.dptr.sgl1.keyed.length = 0;
1438 2 : req->cmd.dptr.sgl1.keyed.key = 0;
1439 2 : req->cmd.dptr.sgl1.address = 0;
1440 :
1441 2 : return 0;
1442 : }
1443 :
1444 : /*
1445 : * Build inline SGL describing contiguous payload buffer.
1446 : */
1447 : static int
1448 3 : nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
1449 : struct spdk_nvme_rdma_req *rdma_req)
1450 : {
1451 3 : struct nvme_request *req = rdma_req->req;
1452 3 : struct nvme_rdma_memory_translation_ctx ctx = {
1453 3 : .addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset,
1454 3 : .length = req->payload_size
1455 : };
1456 : int rc;
1457 :
1458 3 : assert(ctx.length != 0);
1459 3 : assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1460 :
1461 3 : rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1462 3 : if (spdk_unlikely(rc)) {
1463 0 : return -1;
1464 : }
1465 :
1466 3 : rdma_req->send_sgl[1].lkey = ctx.lkey;
1467 :
1468 : /* The first element of this SGL is pointing at an
1469 : * spdk_nvmf_cmd object. For this particular command,
1470 : * we only need the first 64 bytes corresponding to
1471 : * the NVMe command. */
1472 3 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1473 :
1474 3 : rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
1475 3 : rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
1476 :
1477 : /* The RDMA SGL contains two elements. The first describes
1478 : * the NVMe command and the second describes the data
1479 : * payload. */
1480 3 : rdma_req->send_wr.num_sge = 2;
1481 :
1482 3 : req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1483 3 : req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1484 3 : req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1485 3 : req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
1486 : /* Inline only supported for icdoff == 0 currently. This function will
1487 : * not get called for controllers with other values. */
1488 3 : req->cmd.dptr.sgl1.address = (uint64_t)0;
1489 :
1490 3 : return 0;
1491 : }
1492 :
1493 : /*
1494 : * Build SGL describing contiguous payload buffer.
1495 : */
1496 : static int
1497 3 : nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
1498 : struct spdk_nvme_rdma_req *rdma_req)
1499 : {
1500 3 : struct nvme_request *req = rdma_req->req;
1501 3 : struct nvme_rdma_memory_translation_ctx ctx = {
1502 3 : .addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset,
1503 3 : .length = req->payload_size
1504 : };
1505 : int rc;
1506 :
1507 3 : assert(req->payload_size != 0);
1508 3 : assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1509 :
1510 3 : if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1511 1 : SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1512 : req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1513 1 : return -1;
1514 : }
1515 :
1516 2 : rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1517 2 : if (spdk_unlikely(rc)) {
1518 0 : return -1;
1519 : }
1520 :
1521 2 : req->cmd.dptr.sgl1.keyed.key = ctx.rkey;
1522 :
1523 : /* The first element of this SGL is pointing at an
1524 : * spdk_nvmf_cmd object. For this particular command,
1525 : * we only need the first 64 bytes corresponding to
1526 : * the NVMe command. */
1527 2 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1528 :
1529 : /* The RDMA SGL needs one element describing the NVMe command. */
1530 2 : rdma_req->send_wr.num_sge = 1;
1531 :
1532 2 : req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1533 2 : req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1534 2 : req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1535 2 : req->cmd.dptr.sgl1.keyed.length = (uint32_t)ctx.length;
1536 2 : req->cmd.dptr.sgl1.address = (uint64_t)ctx.addr;
1537 :
1538 2 : return 0;
1539 : }
1540 :
1541 : /*
1542 : * Build SGL describing scattered payload buffer.
1543 : */
1544 : static int
1545 7 : nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
1546 : struct spdk_nvme_rdma_req *rdma_req)
1547 : {
1548 7 : struct nvme_request *req = rdma_req->req;
1549 7 : struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
1550 7 : struct nvme_rdma_memory_translation_ctx ctx;
1551 : uint32_t remaining_size;
1552 7 : uint32_t sge_length;
1553 : int rc, max_num_sgl, num_sgl_desc;
1554 :
1555 7 : assert(req->payload_size != 0);
1556 7 : assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1557 7 : assert(req->payload.reset_sgl_fn != NULL);
1558 7 : assert(req->payload.next_sge_fn != NULL);
1559 7 : req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1560 :
1561 7 : max_num_sgl = req->qpair->ctrlr->max_sges;
1562 :
1563 7 : remaining_size = req->payload_size;
1564 7 : num_sgl_desc = 0;
1565 : do {
1566 18 : rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &sge_length);
1567 18 : if (rc) {
1568 1 : return -1;
1569 : }
1570 :
1571 17 : sge_length = spdk_min(remaining_size, sge_length);
1572 :
1573 17 : if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1574 1 : SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1575 : sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1576 1 : return -1;
1577 : }
1578 16 : ctx.length = sge_length;
1579 16 : rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1580 16 : if (spdk_unlikely(rc)) {
1581 1 : return -1;
1582 : }
1583 :
1584 15 : cmd->sgl[num_sgl_desc].keyed.key = ctx.rkey;
1585 15 : cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1586 15 : cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1587 15 : cmd->sgl[num_sgl_desc].keyed.length = (uint32_t)ctx.length;
1588 15 : cmd->sgl[num_sgl_desc].address = (uint64_t)ctx.addr;
1589 :
1590 15 : remaining_size -= ctx.length;
1591 15 : num_sgl_desc++;
1592 15 : } while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
1593 :
1594 :
1595 : /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
1596 4 : if (remaining_size > 0) {
1597 0 : return -1;
1598 : }
1599 :
1600 4 : req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1601 :
1602 : /* The RDMA SGL needs one element describing some portion
1603 : * of the spdk_nvmf_cmd structure. */
1604 4 : rdma_req->send_wr.num_sge = 1;
1605 :
1606 : /*
1607 : * If only one SGL descriptor is required, it can be embedded directly in the command
1608 : * as a data block descriptor.
1609 : */
1610 4 : if (num_sgl_desc == 1) {
1611 : /* The first element of this SGL is pointing at an
1612 : * spdk_nvmf_cmd object. For this particular command,
1613 : * we only need the first 64 bytes corresponding to
1614 : * the NVMe command. */
1615 2 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1616 :
1617 2 : req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type;
1618 2 : req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype;
1619 2 : req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length;
1620 2 : req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key;
1621 2 : req->cmd.dptr.sgl1.address = cmd->sgl[0].address;
1622 : } else {
1623 : /*
1624 : * Otherwise, The SGL descriptor embedded in the command must point to the list of
1625 : * SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
1626 : */
1627 2 : uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc;
1628 :
1629 2 : if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) {
1630 1 : SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n",
1631 : descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes);
1632 1 : return -1;
1633 : }
1634 1 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size;
1635 :
1636 1 : req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1637 1 : req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1638 1 : req->cmd.dptr.sgl1.unkeyed.length = descriptors_size;
1639 1 : req->cmd.dptr.sgl1.address = (uint64_t)0;
1640 : }
1641 :
1642 3 : return 0;
1643 : }
1644 :
1645 : /*
1646 : * Build inline SGL describing sgl payload buffer.
1647 : */
1648 : static int
1649 3 : nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
1650 : struct spdk_nvme_rdma_req *rdma_req)
1651 : {
1652 3 : struct nvme_request *req = rdma_req->req;
1653 3 : struct nvme_rdma_memory_translation_ctx ctx;
1654 3 : uint32_t length;
1655 : int rc;
1656 :
1657 3 : assert(req->payload_size != 0);
1658 3 : assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1659 3 : assert(req->payload.reset_sgl_fn != NULL);
1660 3 : assert(req->payload.next_sge_fn != NULL);
1661 3 : req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1662 :
1663 3 : rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &length);
1664 3 : if (rc) {
1665 0 : return -1;
1666 : }
1667 :
1668 3 : if (length < req->payload_size) {
1669 0 : SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n");
1670 0 : return nvme_rdma_build_sgl_request(rqpair, rdma_req);
1671 : }
1672 :
1673 3 : if (length > req->payload_size) {
1674 0 : length = req->payload_size;
1675 : }
1676 :
1677 3 : ctx.length = length;
1678 3 : rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1679 3 : if (spdk_unlikely(rc)) {
1680 0 : return -1;
1681 : }
1682 :
1683 3 : rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
1684 3 : rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
1685 3 : rdma_req->send_sgl[1].lkey = ctx.lkey;
1686 :
1687 3 : rdma_req->send_wr.num_sge = 2;
1688 :
1689 : /* The first element of this SGL is pointing at an
1690 : * spdk_nvmf_cmd object. For this particular command,
1691 : * we only need the first 64 bytes corresponding to
1692 : * the NVMe command. */
1693 3 : rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1694 :
1695 3 : req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1696 3 : req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1697 3 : req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1698 3 : req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
1699 : /* Inline only supported for icdoff == 0 currently. This function will
1700 : * not get called for controllers with other values. */
1701 3 : req->cmd.dptr.sgl1.address = (uint64_t)0;
1702 :
1703 3 : return 0;
1704 : }
1705 :
1706 : static int
1707 6 : nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
1708 : struct spdk_nvme_rdma_req *rdma_req)
1709 : {
1710 6 : struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
1711 : enum nvme_payload_type payload_type;
1712 : bool icd_supported;
1713 : int rc;
1714 :
1715 6 : assert(rdma_req->req == NULL);
1716 6 : rdma_req->req = req;
1717 6 : req->cmd.cid = rdma_req->id;
1718 6 : payload_type = nvme_payload_type(&req->payload);
1719 : /*
1720 : * Check if icdoff is non zero, to avoid interop conflicts with
1721 : * targets with non-zero icdoff. Both SPDK and the Linux kernel
1722 : * targets use icdoff = 0. For targets with non-zero icdoff, we
1723 : * will currently just not use inline data for now.
1724 : */
1725 6 : icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER
1726 6 : && req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0;
1727 :
1728 6 : if (req->payload_size == 0) {
1729 2 : rc = nvme_rdma_build_null_request(rdma_req);
1730 4 : } else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) {
1731 2 : if (icd_supported) {
1732 1 : rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
1733 : } else {
1734 1 : rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
1735 : }
1736 2 : } else if (payload_type == NVME_PAYLOAD_TYPE_SGL) {
1737 2 : if (icd_supported) {
1738 1 : rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
1739 : } else {
1740 1 : rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
1741 : }
1742 : } else {
1743 0 : rc = -1;
1744 : }
1745 :
1746 6 : if (rc) {
1747 0 : rdma_req->req = NULL;
1748 0 : return rc;
1749 : }
1750 :
1751 6 : memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
1752 6 : return 0;
1753 : }
1754 :
1755 : static struct spdk_nvme_qpair *
1756 5 : nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
1757 : uint16_t qid, uint32_t qsize,
1758 : enum spdk_nvme_qprio qprio,
1759 : uint32_t num_requests,
1760 : bool delay_cmd_submit,
1761 : bool async)
1762 : {
1763 : struct nvme_rdma_qpair *rqpair;
1764 : struct spdk_nvme_qpair *qpair;
1765 : int rc;
1766 :
1767 5 : if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) {
1768 2 : SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n",
1769 : qsize, SPDK_NVME_QUEUE_MIN_ENTRIES);
1770 2 : return NULL;
1771 : }
1772 :
1773 3 : rqpair = spdk_zmalloc(sizeof(struct nvme_rdma_qpair), 0, NULL, SPDK_ENV_NUMA_ID_ANY,
1774 : SPDK_MALLOC_DMA);
1775 3 : if (!rqpair) {
1776 0 : SPDK_ERRLOG("failed to get create rqpair\n");
1777 0 : return NULL;
1778 : }
1779 :
1780 : /* Set num_entries one less than queue size. According to NVMe
1781 : * and NVMe-oF specs we can not submit queue size requests,
1782 : * one slot shall always remain empty.
1783 : */
1784 3 : rqpair->num_entries = qsize - 1;
1785 3 : rqpair->delay_cmd_submit = delay_cmd_submit;
1786 3 : rqpair->state = NVME_RDMA_QPAIR_STATE_INVALID;
1787 3 : qpair = &rqpair->qpair;
1788 3 : rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async);
1789 3 : if (rc != 0) {
1790 0 : spdk_free(rqpair);
1791 0 : return NULL;
1792 : }
1793 :
1794 3 : return qpair;
1795 : }
1796 :
1797 : static void
1798 1 : nvme_rdma_qpair_destroy(struct nvme_rdma_qpair *rqpair)
1799 : {
1800 1 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1801 : struct nvme_rdma_ctrlr *rctrlr;
1802 : struct nvme_rdma_cm_event_entry *entry, *tmp;
1803 :
1804 1 : spdk_rdma_utils_free_mem_map(&rqpair->mr_map);
1805 :
1806 1 : if (rqpair->evt) {
1807 0 : rdma_ack_cm_event(rqpair->evt);
1808 0 : rqpair->evt = NULL;
1809 : }
1810 :
1811 : /*
1812 : * This works because we have the controller lock both in
1813 : * this function and in the function where we add new events.
1814 : */
1815 1 : if (qpair->ctrlr != NULL) {
1816 1 : rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
1817 1 : STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
1818 0 : if (entry->evt->id->context == rqpair) {
1819 0 : STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
1820 0 : rdma_ack_cm_event(entry->evt);
1821 0 : STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
1822 : }
1823 : }
1824 : }
1825 :
1826 1 : if (rqpair->cm_id) {
1827 0 : if (rqpair->rdma_qp) {
1828 0 : spdk_rdma_utils_put_pd(rqpair->rdma_qp->qp->pd);
1829 0 : spdk_rdma_provider_qp_destroy(rqpair->rdma_qp);
1830 0 : rqpair->rdma_qp = NULL;
1831 : }
1832 : }
1833 :
1834 1 : if (rqpair->poller) {
1835 : struct nvme_rdma_poll_group *group;
1836 :
1837 0 : assert(qpair->poll_group);
1838 0 : group = nvme_rdma_poll_group(qpair->poll_group);
1839 :
1840 0 : nvme_rdma_poll_group_put_poller(group, rqpair->poller);
1841 :
1842 0 : rqpair->poller = NULL;
1843 0 : rqpair->cq = NULL;
1844 0 : if (rqpair->srq) {
1845 0 : rqpair->srq = NULL;
1846 0 : rqpair->rsps = NULL;
1847 : }
1848 1 : } else if (rqpair->cq) {
1849 0 : ibv_destroy_cq(rqpair->cq);
1850 0 : rqpair->cq = NULL;
1851 : }
1852 :
1853 1 : nvme_rdma_free_reqs(rqpair);
1854 1 : nvme_rdma_free_rsps(rqpair->rsps);
1855 1 : rqpair->rsps = NULL;
1856 :
1857 : /* destroy cm_id last so cma device will not be freed before we destroy the cq. */
1858 1 : if (rqpair->cm_id) {
1859 0 : rdma_destroy_id(rqpair->cm_id);
1860 0 : rqpair->cm_id = NULL;
1861 : }
1862 1 : }
1863 :
1864 : static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
1865 :
1866 : static int
1867 1 : nvme_rdma_qpair_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
1868 : {
1869 1 : if (ret) {
1870 0 : SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
1871 0 : goto quiet;
1872 : }
1873 :
1874 1 : if (rqpair->poller == NULL) {
1875 : /* If poller is not used, cq is not shared.
1876 : * So complete disconnecting qpair immediately.
1877 : */
1878 1 : goto quiet;
1879 : }
1880 :
1881 0 : if (rqpair->rsps == NULL) {
1882 0 : goto quiet;
1883 : }
1884 :
1885 0 : if (rqpair->need_destroy ||
1886 0 : (rqpair->current_num_sends != 0 ||
1887 0 : (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) {
1888 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_LINGERING;
1889 0 : rqpair->evt_timeout_ticks = (NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US * spdk_get_ticks_hz()) /
1890 0 : SPDK_SEC_TO_USEC + spdk_get_ticks();
1891 :
1892 0 : return -EAGAIN;
1893 : }
1894 :
1895 0 : quiet:
1896 1 : rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
1897 :
1898 1 : nvme_rdma_qpair_abort_reqs(&rqpair->qpair, rqpair->qpair.abort_dnr);
1899 1 : nvme_rdma_qpair_destroy(rqpair);
1900 1 : nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
1901 :
1902 1 : return 0;
1903 : }
1904 :
1905 : static int
1906 0 : nvme_rdma_qpair_wait_until_quiet(struct nvme_rdma_qpair *rqpair)
1907 : {
1908 0 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1909 0 : struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
1910 :
1911 0 : if (spdk_get_ticks() < rqpair->evt_timeout_ticks &&
1912 0 : (rqpair->current_num_sends != 0 ||
1913 0 : (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) {
1914 0 : return -EAGAIN;
1915 : }
1916 :
1917 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
1918 0 : nvme_rdma_qpair_abort_reqs(qpair, qpair->abort_dnr);
1919 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1920 0 : nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1921 : }
1922 0 : nvme_rdma_qpair_destroy(rqpair);
1923 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1924 0 : nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1925 : }
1926 0 : nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
1927 :
1928 0 : return 0;
1929 : }
1930 :
1931 : static void
1932 0 : _nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1933 : nvme_rdma_cm_event_cb disconnected_qpair_cb)
1934 : {
1935 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1936 : int rc;
1937 :
1938 0 : assert(disconnected_qpair_cb != NULL);
1939 :
1940 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_EXITING;
1941 :
1942 0 : if (rqpair->cm_id) {
1943 0 : if (rqpair->rdma_qp) {
1944 0 : rc = spdk_rdma_provider_qp_disconnect(rqpair->rdma_qp);
1945 0 : if ((qpair->ctrlr != NULL) && (rc == 0)) {
1946 0 : rc = nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_DISCONNECTED,
1947 : disconnected_qpair_cb);
1948 0 : if (rc == 0) {
1949 0 : return;
1950 : }
1951 : }
1952 : }
1953 : }
1954 :
1955 0 : disconnected_qpair_cb(rqpair, 0);
1956 : }
1957 :
1958 : static int
1959 0 : nvme_rdma_ctrlr_disconnect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1960 : {
1961 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1962 : int rc;
1963 :
1964 0 : switch (rqpair->state) {
1965 0 : case NVME_RDMA_QPAIR_STATE_EXITING:
1966 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1967 0 : nvme_ctrlr_lock(ctrlr);
1968 : }
1969 :
1970 0 : rc = nvme_rdma_process_event_poll(rqpair);
1971 :
1972 0 : if (!nvme_qpair_is_admin_queue(qpair)) {
1973 0 : nvme_ctrlr_unlock(ctrlr);
1974 : }
1975 0 : break;
1976 :
1977 0 : case NVME_RDMA_QPAIR_STATE_LINGERING:
1978 0 : rc = nvme_rdma_qpair_wait_until_quiet(rqpair);
1979 0 : break;
1980 0 : case NVME_RDMA_QPAIR_STATE_EXITED:
1981 0 : rc = 0;
1982 0 : break;
1983 :
1984 0 : default:
1985 0 : assert(false);
1986 : rc = -EAGAIN;
1987 : break;
1988 : }
1989 :
1990 0 : return rc;
1991 : }
1992 :
1993 : static void
1994 0 : nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1995 : {
1996 : int rc;
1997 :
1998 0 : _nvme_rdma_ctrlr_disconnect_qpair(ctrlr, qpair, nvme_rdma_qpair_disconnected);
1999 :
2000 : /* If the async mode is disabled, poll the qpair until it is actually disconnected.
2001 : * It is ensured that poll_group_process_completions() calls disconnected_qpair_cb
2002 : * for any disconnected qpair. Hence, we do not have to check if the qpair is in
2003 : * a poll group or not.
2004 : * At the same time, if the qpair is being destroyed, i.e. this function is called by
2005 : * spdk_nvme_ctrlr_free_io_qpair then we need to wait until qpair is disconnected, otherwise
2006 : * we may leak some resources.
2007 : */
2008 0 : if (qpair->async && !qpair->destroy_in_progress) {
2009 0 : return;
2010 : }
2011 :
2012 : while (1) {
2013 0 : rc = nvme_rdma_ctrlr_disconnect_qpair_poll(ctrlr, qpair);
2014 0 : if (rc != -EAGAIN) {
2015 0 : break;
2016 : }
2017 : }
2018 : }
2019 :
2020 : static int
2021 0 : nvme_rdma_stale_conn_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
2022 : {
2023 0 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2024 :
2025 0 : if (ret) {
2026 0 : SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
2027 : }
2028 :
2029 0 : nvme_rdma_qpair_destroy(rqpair);
2030 :
2031 0 : qpair->last_transport_failure_reason = qpair->transport_failure_reason;
2032 0 : qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_NONE;
2033 :
2034 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_STALE_CONN;
2035 0 : rqpair->evt_timeout_ticks = (NVME_RDMA_STALE_CONN_RETRY_DELAY_US * spdk_get_ticks_hz()) /
2036 0 : SPDK_SEC_TO_USEC + spdk_get_ticks();
2037 :
2038 0 : return 0;
2039 : }
2040 :
2041 : static int
2042 0 : nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair)
2043 : {
2044 0 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2045 :
2046 0 : if (rqpair->stale_conn_retry_count >= NVME_RDMA_STALE_CONN_RETRY_MAX) {
2047 0 : SPDK_ERRLOG("Retry failed %d times, give up stale connection to qpair (cntlid:%u, qid:%u).\n",
2048 : NVME_RDMA_STALE_CONN_RETRY_MAX, qpair->ctrlr->cntlid, qpair->id);
2049 0 : return -ESTALE;
2050 : }
2051 :
2052 0 : rqpair->stale_conn_retry_count++;
2053 :
2054 0 : SPDK_NOTICELOG("%d times, retry stale connection to qpair (cntlid:%u, qid:%u).\n",
2055 : rqpair->stale_conn_retry_count, qpair->ctrlr->cntlid, qpair->id);
2056 :
2057 0 : _nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair, nvme_rdma_stale_conn_disconnected);
2058 :
2059 0 : return 0;
2060 : }
2061 :
2062 : static int
2063 1 : nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
2064 : {
2065 : struct nvme_rdma_qpair *rqpair;
2066 :
2067 1 : assert(qpair != NULL);
2068 1 : rqpair = nvme_rdma_qpair(qpair);
2069 :
2070 1 : if (rqpair->state != NVME_RDMA_QPAIR_STATE_EXITED) {
2071 : int rc __attribute__((unused));
2072 :
2073 : /* qpair was removed from the poll group while the disconnect is not finished.
2074 : * Destroy rdma resources forcefully. */
2075 1 : rc = nvme_rdma_qpair_disconnected(rqpair, 0);
2076 1 : assert(rc == 0);
2077 : }
2078 :
2079 1 : nvme_rdma_qpair_abort_reqs(qpair, qpair->abort_dnr);
2080 1 : nvme_qpair_deinit(qpair);
2081 :
2082 1 : if (spdk_rdma_utils_put_memory_domain(rqpair->memory_domain) != 0) {
2083 0 : SPDK_ERRLOG("Failed to release memory domain\n");
2084 0 : assert(0);
2085 : }
2086 :
2087 1 : spdk_free(rqpair);
2088 :
2089 1 : return 0;
2090 : }
2091 :
2092 : static struct spdk_nvme_qpair *
2093 0 : nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
2094 : const struct spdk_nvme_io_qpair_opts *opts)
2095 : {
2096 0 : return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
2097 0 : opts->io_queue_requests,
2098 0 : opts->delay_cmd_submit,
2099 0 : opts->async_mode);
2100 : }
2101 :
2102 : static int
2103 0 : nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
2104 : {
2105 : /* do nothing here */
2106 0 : return 0;
2107 : }
2108 :
2109 : static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
2110 :
2111 : /* We have to use the typedef in the function declaration to appease astyle. */
2112 : typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t;
2113 :
2114 : static spdk_nvme_ctrlr_t *
2115 1 : nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
2116 : const struct spdk_nvme_ctrlr_opts *opts,
2117 : void *devhandle)
2118 : {
2119 : struct nvme_rdma_ctrlr *rctrlr;
2120 : struct ibv_context **contexts;
2121 1 : struct ibv_device_attr dev_attr;
2122 : int i, flag, rc;
2123 :
2124 1 : rctrlr = spdk_zmalloc(sizeof(struct nvme_rdma_ctrlr), 0, NULL, SPDK_ENV_NUMA_ID_ANY,
2125 : SPDK_MALLOC_DMA);
2126 1 : if (rctrlr == NULL) {
2127 0 : SPDK_ERRLOG("could not allocate ctrlr\n");
2128 0 : return NULL;
2129 : }
2130 :
2131 1 : rctrlr->ctrlr.opts = *opts;
2132 1 : rctrlr->ctrlr.trid = *trid;
2133 :
2134 1 : if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) {
2135 1 : SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n",
2136 : NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT);
2137 1 : rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT;
2138 : }
2139 :
2140 1 : if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) {
2141 1 : SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n",
2142 : NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT);
2143 1 : rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT;
2144 : }
2145 :
2146 1 : contexts = rdma_get_devices(NULL);
2147 1 : if (contexts == NULL) {
2148 0 : SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2149 0 : spdk_free(rctrlr);
2150 0 : return NULL;
2151 : }
2152 :
2153 1 : i = 0;
2154 1 : rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS;
2155 :
2156 3 : while (contexts[i] != NULL) {
2157 2 : rc = ibv_query_device(contexts[i], &dev_attr);
2158 2 : if (rc < 0) {
2159 0 : SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2160 0 : rdma_free_devices(contexts);
2161 0 : spdk_free(rctrlr);
2162 0 : return NULL;
2163 : }
2164 2 : rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge);
2165 2 : i++;
2166 : }
2167 :
2168 1 : rdma_free_devices(contexts);
2169 :
2170 1 : rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
2171 1 : if (rc != 0) {
2172 0 : spdk_free(rctrlr);
2173 0 : return NULL;
2174 : }
2175 :
2176 1 : STAILQ_INIT(&rctrlr->pending_cm_events);
2177 1 : STAILQ_INIT(&rctrlr->free_cm_events);
2178 1 : rctrlr->cm_events = spdk_zmalloc(NVME_RDMA_NUM_CM_EVENTS * sizeof(*rctrlr->cm_events), 0, NULL,
2179 : SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
2180 1 : if (rctrlr->cm_events == NULL) {
2181 0 : SPDK_ERRLOG("unable to allocate buffers to hold CM events.\n");
2182 0 : goto destruct_ctrlr;
2183 : }
2184 :
2185 257 : for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) {
2186 256 : STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link);
2187 : }
2188 :
2189 1 : rctrlr->cm_channel = rdma_create_event_channel();
2190 1 : if (rctrlr->cm_channel == NULL) {
2191 0 : SPDK_ERRLOG("rdma_create_event_channel() failed\n");
2192 0 : goto destruct_ctrlr;
2193 : }
2194 :
2195 1 : flag = fcntl(rctrlr->cm_channel->fd, F_GETFL);
2196 1 : if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2197 0 : SPDK_ERRLOG("Cannot set event channel to non blocking\n");
2198 0 : goto destruct_ctrlr;
2199 : }
2200 :
2201 1 : rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
2202 1 : rctrlr->ctrlr.opts.admin_queue_size, 0,
2203 1 : rctrlr->ctrlr.opts.admin_queue_size, false, true);
2204 1 : if (!rctrlr->ctrlr.adminq) {
2205 0 : SPDK_ERRLOG("failed to create admin qpair\n");
2206 0 : goto destruct_ctrlr;
2207 : }
2208 :
2209 1 : if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
2210 0 : SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
2211 0 : goto destruct_ctrlr;
2212 : }
2213 :
2214 1 : SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n");
2215 1 : return &rctrlr->ctrlr;
2216 :
2217 0 : destruct_ctrlr:
2218 0 : nvme_ctrlr_destruct(&rctrlr->ctrlr);
2219 0 : return NULL;
2220 : }
2221 :
2222 : static int
2223 1 : nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
2224 : {
2225 1 : struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2226 : struct nvme_rdma_cm_event_entry *entry;
2227 :
2228 1 : if (ctrlr->adminq) {
2229 1 : nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq);
2230 : }
2231 :
2232 1 : STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) {
2233 0 : rdma_ack_cm_event(entry->evt);
2234 : }
2235 :
2236 1 : STAILQ_INIT(&rctrlr->free_cm_events);
2237 1 : STAILQ_INIT(&rctrlr->pending_cm_events);
2238 1 : spdk_free(rctrlr->cm_events);
2239 :
2240 1 : if (rctrlr->cm_channel) {
2241 1 : rdma_destroy_event_channel(rctrlr->cm_channel);
2242 1 : rctrlr->cm_channel = NULL;
2243 : }
2244 :
2245 1 : nvme_ctrlr_destruct_finish(ctrlr);
2246 :
2247 1 : spdk_free(rctrlr);
2248 :
2249 1 : return 0;
2250 : }
2251 :
2252 : static int
2253 2 : nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
2254 : struct nvme_request *req)
2255 : {
2256 : struct nvme_rdma_qpair *rqpair;
2257 : struct spdk_nvme_rdma_req *rdma_req;
2258 : struct ibv_send_wr *wr;
2259 : struct nvme_rdma_poll_group *group;
2260 :
2261 2 : rqpair = nvme_rdma_qpair(qpair);
2262 2 : assert(rqpair != NULL);
2263 2 : assert(req != NULL);
2264 :
2265 2 : rdma_req = nvme_rdma_req_get(rqpair);
2266 2 : if (spdk_unlikely(!rdma_req)) {
2267 1 : if (rqpair->poller) {
2268 1 : rqpair->poller->stats.queued_requests++;
2269 : }
2270 : /* Inform the upper layer to try again later. */
2271 1 : return -EAGAIN;
2272 : }
2273 :
2274 1 : if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
2275 0 : SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
2276 0 : nvme_rdma_req_put(rqpair, rdma_req);
2277 0 : return -1;
2278 : }
2279 :
2280 1 : TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
2281 :
2282 1 : if (!rqpair->link_active.tqe_prev && qpair->poll_group) {
2283 0 : group = nvme_rdma_poll_group(qpair->poll_group);
2284 0 : TAILQ_INSERT_TAIL(&group->active_qpairs, rqpair, link_active);
2285 : }
2286 1 : rqpair->num_outstanding_reqs++;
2287 :
2288 1 : assert(rqpair->current_num_sends < rqpair->num_entries);
2289 1 : rqpair->current_num_sends++;
2290 :
2291 1 : wr = &rdma_req->send_wr;
2292 1 : wr->next = NULL;
2293 1 : nvme_rdma_trace_ibv_sge(wr->sg_list);
2294 :
2295 1 : spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, wr);
2296 :
2297 1 : if (!rqpair->delay_cmd_submit) {
2298 1 : return nvme_rdma_qpair_submit_sends(rqpair);
2299 : }
2300 :
2301 0 : return 0;
2302 : }
2303 :
2304 : static int
2305 0 : nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
2306 : {
2307 : /* Currently, doing nothing here */
2308 0 : return 0;
2309 : }
2310 :
2311 : static void
2312 2 : nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
2313 : {
2314 : struct spdk_nvme_rdma_req *rdma_req, *tmp;
2315 2 : struct spdk_nvme_cpl cpl;
2316 2 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2317 :
2318 2 : cpl.sqid = qpair->id;
2319 2 : cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2320 2 : cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2321 2 : cpl.status.dnr = dnr;
2322 :
2323 : /*
2324 : * We cannot abort requests at the RDMA layer without
2325 : * unregistering them. If we do, we can still get error
2326 : * free completions on the shared completion queue.
2327 : */
2328 2 : if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING &&
2329 0 : nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) {
2330 0 : nvme_ctrlr_disconnect_qpair(qpair);
2331 : }
2332 :
2333 2 : TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2334 0 : nvme_rdma_req_complete(rdma_req, &cpl, true);
2335 : }
2336 2 : }
2337 :
2338 : static void
2339 0 : nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
2340 : {
2341 : uint64_t t02;
2342 : struct spdk_nvme_rdma_req *rdma_req, *tmp;
2343 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2344 0 : struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
2345 : struct spdk_nvme_ctrlr_process *active_proc;
2346 :
2347 : /* Don't check timeouts during controller initialization. */
2348 0 : if (ctrlr->state != NVME_CTRLR_STATE_READY) {
2349 0 : return;
2350 : }
2351 :
2352 0 : if (nvme_qpair_is_admin_queue(qpair)) {
2353 0 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
2354 : } else {
2355 0 : active_proc = qpair->active_proc;
2356 : }
2357 :
2358 : /* Only check timeouts if the current process has a timeout callback. */
2359 0 : if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
2360 0 : return;
2361 : }
2362 :
2363 0 : t02 = spdk_get_ticks();
2364 0 : TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2365 0 : assert(rdma_req->req != NULL);
2366 :
2367 0 : if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
2368 : /*
2369 : * The requests are in order, so as soon as one has not timed out,
2370 : * stop iterating.
2371 : */
2372 0 : break;
2373 : }
2374 : }
2375 : }
2376 :
2377 : static inline void
2378 0 : nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
2379 : {
2380 0 : struct spdk_nvme_rdma_rsp *rdma_rsp = rdma_req->rdma_rsp;
2381 0 : struct ibv_recv_wr *recv_wr = rdma_rsp->recv_wr;
2382 :
2383 0 : nvme_rdma_req_complete(rdma_req, &rdma_rsp->cpl, true);
2384 :
2385 0 : assert(rqpair->rsps->current_num_recvs < rqpair->rsps->num_entries);
2386 0 : rqpair->rsps->current_num_recvs++;
2387 :
2388 0 : recv_wr->next = NULL;
2389 0 : nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
2390 :
2391 0 : if (!rqpair->srq) {
2392 0 : spdk_rdma_provider_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr);
2393 : } else {
2394 0 : spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, recv_wr);
2395 : }
2396 0 : }
2397 :
2398 : #define MAX_COMPLETIONS_PER_POLL 128
2399 :
2400 : static void
2401 0 : nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason)
2402 : {
2403 0 : if (failure_reason == IBV_WC_RETRY_EXC_ERR) {
2404 0 : qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
2405 0 : } else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) {
2406 0 : qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
2407 : }
2408 :
2409 0 : nvme_ctrlr_disconnect_qpair(qpair);
2410 0 : }
2411 :
2412 : static struct nvme_rdma_qpair *
2413 4 : get_rdma_qpair_from_wc(struct nvme_rdma_poll_group *group, struct ibv_wc *wc)
2414 : {
2415 : struct spdk_nvme_qpair *qpair;
2416 : struct nvme_rdma_qpair *rqpair;
2417 :
2418 5 : STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) {
2419 2 : rqpair = nvme_rdma_qpair(qpair);
2420 2 : if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2421 1 : return rqpair;
2422 : }
2423 : }
2424 :
2425 4 : STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) {
2426 2 : rqpair = nvme_rdma_qpair(qpair);
2427 2 : if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2428 1 : return rqpair;
2429 : }
2430 : }
2431 :
2432 2 : return NULL;
2433 : }
2434 :
2435 : static inline void
2436 0 : nvme_rdma_log_wc_status(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc)
2437 : {
2438 0 : struct nvme_rdma_wr *rdma_wr = (struct nvme_rdma_wr *)wc->wr_id;
2439 :
2440 0 : if (wc->status == IBV_WC_WR_FLUSH_ERR) {
2441 : /* If qpair is in ERR state, we will receive completions for all posted and not completed
2442 : * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
2443 0 : SPDK_DEBUGLOG(nvme, "WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2444 : rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2445 : ibv_wc_status_str(wc->status));
2446 : } else {
2447 0 : SPDK_ERRLOG("WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2448 : rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2449 : ibv_wc_status_str(wc->status));
2450 : }
2451 0 : }
2452 :
2453 : static inline int
2454 0 : nvme_rdma_process_recv_completion(struct nvme_rdma_poller *poller, struct ibv_wc *wc,
2455 : struct nvme_rdma_wr *rdma_wr)
2456 : {
2457 : struct nvme_rdma_qpair *rqpair;
2458 : struct spdk_nvme_rdma_req *rdma_req;
2459 : struct spdk_nvme_rdma_rsp *rdma_rsp;
2460 :
2461 0 : rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr);
2462 :
2463 0 : if (poller && poller->srq) {
2464 0 : rqpair = get_rdma_qpair_from_wc(poller->group, wc);
2465 0 : if (spdk_unlikely(!rqpair)) {
2466 : /* Since we do not handle the LAST_WQE_REACHED event, we do not know when
2467 : * a Receive Queue in a QP, that is associated with an SRQ, is flushed.
2468 : * We may get a WC for a already destroyed QP.
2469 : *
2470 : * However, for the SRQ, this is not any error. Hence, just re-post the
2471 : * receive request to the SRQ to reuse for other QPs, and return 0.
2472 : */
2473 0 : spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
2474 0 : return 0;
2475 : }
2476 : } else {
2477 0 : rqpair = rdma_rsp->rqpair;
2478 0 : if (spdk_unlikely(!rqpair)) {
2479 : /* TODO: Fix forceful QP destroy when it is not async mode.
2480 : * CQ itself did not cause any error. Hence, return 0 for now.
2481 : */
2482 0 : SPDK_WARNLOG("QP might be already destroyed.\n");
2483 0 : return 0;
2484 : }
2485 : }
2486 :
2487 :
2488 0 : assert(rqpair->rsps->current_num_recvs > 0);
2489 0 : rqpair->rsps->current_num_recvs--;
2490 :
2491 0 : if (wc->status) {
2492 0 : nvme_rdma_log_wc_status(rqpair, wc);
2493 0 : goto err_wc;
2494 : }
2495 :
2496 0 : SPDK_DEBUGLOG(nvme, "CQ recv completion\n");
2497 :
2498 0 : if (wc->byte_len < sizeof(struct spdk_nvme_cpl)) {
2499 0 : SPDK_ERRLOG("recv length %u less than expected response size\n", wc->byte_len);
2500 0 : goto err_wc;
2501 : }
2502 0 : rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid];
2503 0 : rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED;
2504 0 : rdma_req->rdma_rsp = rdma_rsp;
2505 :
2506 0 : if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) == 0) {
2507 0 : return 0;
2508 : }
2509 :
2510 0 : rqpair->num_completions++;
2511 :
2512 0 : nvme_rdma_request_ready(rqpair, rdma_req);
2513 :
2514 0 : if (!rqpair->delay_cmd_submit) {
2515 0 : if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2516 0 : SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2517 0 : nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2518 0 : return -ENXIO;
2519 : }
2520 : }
2521 :
2522 0 : return 1;
2523 :
2524 0 : err_wc:
2525 0 : nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2526 0 : if (poller && poller->srq) {
2527 0 : spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
2528 : }
2529 0 : return -ENXIO;
2530 : }
2531 :
2532 : static inline int
2533 0 : nvme_rdma_process_send_completion(struct nvme_rdma_poller *poller,
2534 : struct nvme_rdma_qpair *rdma_qpair,
2535 : struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr)
2536 : {
2537 : struct nvme_rdma_qpair *rqpair;
2538 : struct spdk_nvme_rdma_req *rdma_req;
2539 :
2540 0 : rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr);
2541 0 : rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL;
2542 0 : if (!rqpair) {
2543 0 : rqpair = rdma_qpair != NULL ? rdma_qpair : get_rdma_qpair_from_wc(poller->group, wc);
2544 : }
2545 :
2546 : /* If we are flushing I/O */
2547 0 : if (wc->status) {
2548 0 : if (!rqpair) {
2549 : /* When poll_group is used, several qpairs share the same CQ and it is possible to
2550 : * receive a completion with error (e.g. IBV_WC_WR_FLUSH_ERR) for already disconnected qpair
2551 : * That happens due to qpair is destroyed while there are submitted but not completed send/receive
2552 : * Work Requests */
2553 0 : assert(poller);
2554 0 : return 0;
2555 : }
2556 0 : assert(rqpair->current_num_sends > 0);
2557 0 : rqpair->current_num_sends--;
2558 0 : nvme_rdma_log_wc_status(rqpair, wc);
2559 0 : nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2560 0 : if (rdma_req->rdma_rsp && poller && poller->srq) {
2561 0 : spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_req->rdma_rsp->recv_wr);
2562 : }
2563 0 : return -ENXIO;
2564 : }
2565 :
2566 : /* We do not support Soft Roce anymore. Other than Soft Roce's bug, we should not
2567 : * receive a completion without error status after qpair is disconnected/destroyed.
2568 : */
2569 0 : if (spdk_unlikely(rdma_req->req == NULL)) {
2570 : /*
2571 : * Some infiniband drivers do not guarantee the previous assumption after we
2572 : * received a RDMA_CM_EVENT_DEVICE_REMOVAL event.
2573 : */
2574 0 : SPDK_ERRLOG("Received malformed completion: request 0x%"PRIx64" type %d\n", wc->wr_id,
2575 : rdma_wr->type);
2576 0 : if (!rqpair || !rqpair->need_destroy) {
2577 0 : assert(0);
2578 : }
2579 0 : return -ENXIO;
2580 : }
2581 :
2582 0 : rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED;
2583 0 : assert(rqpair->current_num_sends > 0);
2584 0 : rqpair->current_num_sends--;
2585 :
2586 0 : if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) == 0) {
2587 0 : return 0;
2588 : }
2589 :
2590 0 : rqpair->num_completions++;
2591 :
2592 0 : nvme_rdma_request_ready(rqpair, rdma_req);
2593 :
2594 0 : if (!rqpair->delay_cmd_submit) {
2595 0 : if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2596 0 : SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2597 0 : nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2598 0 : return -ENXIO;
2599 : }
2600 : }
2601 :
2602 0 : return 1;
2603 : }
2604 :
2605 : static int
2606 0 : nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size,
2607 : struct nvme_rdma_poller *poller,
2608 : struct nvme_rdma_qpair *rdma_qpair,
2609 : uint64_t *rdma_completions)
2610 : {
2611 0 : struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL];
2612 : struct nvme_rdma_wr *rdma_wr;
2613 0 : uint32_t reaped = 0;
2614 0 : int completion_rc = 0;
2615 : int rc, _rc, i;
2616 :
2617 0 : rc = ibv_poll_cq(cq, batch_size, wc);
2618 0 : if (rc < 0) {
2619 0 : SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
2620 : errno, spdk_strerror(errno));
2621 0 : return -ECANCELED;
2622 0 : } else if (rc == 0) {
2623 0 : return 0;
2624 : }
2625 :
2626 0 : for (i = 0; i < rc; i++) {
2627 0 : rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id;
2628 0 : switch (rdma_wr->type) {
2629 0 : case RDMA_WR_TYPE_RECV:
2630 0 : _rc = nvme_rdma_process_recv_completion(poller, &wc[i], rdma_wr);
2631 0 : break;
2632 :
2633 0 : case RDMA_WR_TYPE_SEND:
2634 0 : _rc = nvme_rdma_process_send_completion(poller, rdma_qpair, &wc[i], rdma_wr);
2635 0 : break;
2636 :
2637 0 : default:
2638 0 : SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type);
2639 0 : return -ECANCELED;
2640 : }
2641 0 : if (spdk_likely(_rc >= 0)) {
2642 0 : reaped += _rc;
2643 : } else {
2644 0 : completion_rc = _rc;
2645 : }
2646 : }
2647 :
2648 0 : *rdma_completions += rc;
2649 :
2650 0 : if (completion_rc) {
2651 0 : return completion_rc;
2652 : }
2653 :
2654 0 : return reaped;
2655 : }
2656 :
2657 : static void
2658 0 : dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
2659 : {
2660 :
2661 0 : }
2662 :
2663 : static int
2664 0 : nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
2665 : uint32_t max_completions)
2666 : {
2667 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2668 0 : struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
2669 0 : int rc = 0, batch_size;
2670 : struct ibv_cq *cq;
2671 0 : uint64_t rdma_completions = 0;
2672 :
2673 : /*
2674 : * This is used during the connection phase. It's possible that we are still reaping error completions
2675 : * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq
2676 : * is shared.
2677 : */
2678 0 : if (qpair->poll_group != NULL) {
2679 0 : return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions,
2680 : dummy_disconnected_qpair_cb);
2681 : }
2682 :
2683 0 : if (max_completions == 0) {
2684 0 : max_completions = rqpair->num_entries;
2685 : } else {
2686 0 : max_completions = spdk_min(max_completions, rqpair->num_entries);
2687 : }
2688 :
2689 0 : switch (nvme_qpair_get_state(qpair)) {
2690 0 : case NVME_QPAIR_CONNECTING:
2691 0 : rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
2692 0 : if (rc == 0) {
2693 : /* Once the connection is completed, we can submit queued requests */
2694 0 : nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
2695 0 : } else if (rc != -EAGAIN) {
2696 0 : SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
2697 0 : goto failed;
2698 0 : } else if (rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING) {
2699 0 : return 0;
2700 : }
2701 0 : break;
2702 :
2703 0 : case NVME_QPAIR_DISCONNECTING:
2704 0 : nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
2705 0 : return -ENXIO;
2706 :
2707 0 : default:
2708 0 : if (nvme_qpair_is_admin_queue(qpair)) {
2709 0 : nvme_rdma_poll_events(rctrlr);
2710 : }
2711 0 : nvme_rdma_qpair_process_cm_event(rqpair);
2712 0 : break;
2713 : }
2714 :
2715 0 : if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
2716 0 : goto failed;
2717 : }
2718 :
2719 0 : cq = rqpair->cq;
2720 :
2721 0 : rqpair->num_completions = 0;
2722 : do {
2723 0 : batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL);
2724 0 : rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions);
2725 :
2726 0 : if (rc == 0) {
2727 0 : break;
2728 : /* Handle the case where we fail to poll the cq. */
2729 0 : } else if (rc == -ECANCELED) {
2730 0 : goto failed;
2731 0 : } else if (rc == -ENXIO) {
2732 0 : return rc;
2733 : }
2734 0 : } while (rqpair->num_completions < max_completions);
2735 :
2736 0 : if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) ||
2737 : nvme_rdma_qpair_submit_recvs(rqpair))) {
2738 0 : goto failed;
2739 : }
2740 :
2741 0 : if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
2742 0 : nvme_rdma_qpair_check_timeout(qpair);
2743 : }
2744 :
2745 0 : return rqpair->num_completions;
2746 :
2747 0 : failed:
2748 0 : nvme_rdma_fail_qpair(qpair, 0);
2749 0 : return -ENXIO;
2750 : }
2751 :
2752 : static uint32_t
2753 0 : nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
2754 : {
2755 : /* max_mr_size by ibv_query_device indicates the largest value that we can
2756 : * set for a registered memory region. It is independent from the actual
2757 : * I/O size and is very likely to be larger than 2 MiB which is the
2758 : * granularity we currently register memory regions. Hence return
2759 : * UINT32_MAX here and let the generic layer use the controller data to
2760 : * moderate this value.
2761 : */
2762 0 : return UINT32_MAX;
2763 : }
2764 :
2765 : static uint16_t
2766 5 : nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
2767 : {
2768 5 : struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2769 5 : uint32_t max_sge = rctrlr->max_sge;
2770 5 : uint32_t max_in_capsule_sge = (ctrlr->cdata.nvmf_specific.ioccsz * 16 -
2771 5 : sizeof(struct spdk_nvme_cmd)) /
2772 : sizeof(struct spdk_nvme_sgl_descriptor);
2773 :
2774 : /* Max SGE is limited by capsule size */
2775 5 : max_sge = spdk_min(max_sge, max_in_capsule_sge);
2776 : /* Max SGE may be limited by MSDBD */
2777 5 : if (ctrlr->cdata.nvmf_specific.msdbd != 0) {
2778 5 : max_sge = spdk_min(max_sge, ctrlr->cdata.nvmf_specific.msdbd);
2779 : }
2780 :
2781 : /* Max SGE can't be less than 1 */
2782 5 : max_sge = spdk_max(1, max_sge);
2783 5 : return max_sge;
2784 : }
2785 :
2786 : static int
2787 0 : nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
2788 : int (*iter_fn)(struct nvme_request *req, void *arg),
2789 : void *arg)
2790 : {
2791 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2792 : struct spdk_nvme_rdma_req *rdma_req, *tmp;
2793 : int rc;
2794 :
2795 0 : assert(iter_fn != NULL);
2796 :
2797 0 : TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2798 0 : assert(rdma_req->req != NULL);
2799 :
2800 0 : rc = iter_fn(rdma_req->req, arg);
2801 0 : if (rc != 0) {
2802 0 : return rc;
2803 : }
2804 : }
2805 :
2806 0 : return 0;
2807 : }
2808 :
2809 : static int
2810 0 : nvme_rdma_qpair_authenticate(struct spdk_nvme_qpair *qpair)
2811 : {
2812 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2813 : int rc;
2814 :
2815 : /* If the qpair is still connecting, it'll be forced to authenticate later on */
2816 0 : if (rqpair->state < NVME_RDMA_QPAIR_STATE_RUNNING) {
2817 0 : return 0;
2818 0 : } else if (rqpair->state != NVME_RDMA_QPAIR_STATE_RUNNING) {
2819 0 : return -ENOTCONN;
2820 : }
2821 :
2822 0 : rc = nvme_fabric_qpair_authenticate_async(qpair);
2823 0 : if (rc == 0) {
2824 0 : nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTING);
2825 0 : rqpair->state = NVME_RDMA_QPAIR_STATE_AUTHENTICATING;
2826 : }
2827 :
2828 0 : return rc;
2829 : }
2830 :
2831 : static void
2832 0 : nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
2833 : {
2834 : struct spdk_nvme_rdma_req *rdma_req, *tmp;
2835 0 : struct spdk_nvme_cpl cpl;
2836 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2837 :
2838 0 : cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2839 0 : cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2840 :
2841 0 : TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2842 0 : assert(rdma_req->req != NULL);
2843 :
2844 0 : if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
2845 0 : continue;
2846 : }
2847 :
2848 0 : nvme_rdma_req_complete(rdma_req, &cpl, false);
2849 : }
2850 0 : }
2851 :
2852 : static void
2853 9 : nvme_rdma_poller_destroy(struct nvme_rdma_poller *poller)
2854 : {
2855 9 : if (poller->cq) {
2856 7 : ibv_destroy_cq(poller->cq);
2857 : }
2858 9 : if (poller->rsps) {
2859 0 : nvme_rdma_free_rsps(poller->rsps);
2860 : }
2861 9 : if (poller->srq) {
2862 0 : spdk_rdma_provider_srq_destroy(poller->srq);
2863 : }
2864 9 : if (poller->mr_map) {
2865 0 : spdk_rdma_utils_free_mem_map(&poller->mr_map);
2866 : }
2867 9 : if (poller->pd) {
2868 0 : spdk_rdma_utils_put_pd(poller->pd);
2869 : }
2870 9 : free(poller);
2871 9 : }
2872 :
2873 : static struct nvme_rdma_poller *
2874 9 : nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx)
2875 : {
2876 : struct nvme_rdma_poller *poller;
2877 9 : struct ibv_device_attr dev_attr;
2878 9 : struct spdk_rdma_provider_srq_init_attr srq_init_attr = {};
2879 9 : struct nvme_rdma_rsp_opts opts;
2880 : int num_cqe, max_num_cqe;
2881 : int rc;
2882 :
2883 9 : poller = calloc(1, sizeof(*poller));
2884 9 : if (poller == NULL) {
2885 0 : SPDK_ERRLOG("Unable to allocate poller.\n");
2886 0 : return NULL;
2887 : }
2888 :
2889 9 : poller->group = group;
2890 9 : poller->device = ctx;
2891 :
2892 9 : if (g_spdk_nvme_transport_opts.rdma_srq_size != 0) {
2893 0 : rc = ibv_query_device(ctx, &dev_attr);
2894 0 : if (rc) {
2895 0 : SPDK_ERRLOG("Unable to query RDMA device.\n");
2896 0 : goto fail;
2897 : }
2898 :
2899 0 : poller->pd = spdk_rdma_utils_get_pd(ctx);
2900 0 : if (poller->pd == NULL) {
2901 0 : SPDK_ERRLOG("Unable to get PD.\n");
2902 0 : goto fail;
2903 : }
2904 :
2905 0 : poller->mr_map = spdk_rdma_utils_create_mem_map(poller->pd, &g_nvme_hooks,
2906 : IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE);
2907 0 : if (poller->mr_map == NULL) {
2908 0 : SPDK_ERRLOG("Unable to create memory map.\n");
2909 0 : goto fail;
2910 : }
2911 :
2912 0 : srq_init_attr.stats = &poller->stats.rdma_stats.recv;
2913 0 : srq_init_attr.pd = poller->pd;
2914 0 : srq_init_attr.srq_init_attr.attr.max_wr = spdk_min((uint32_t)dev_attr.max_srq_wr,
2915 : g_spdk_nvme_transport_opts.rdma_srq_size);
2916 0 : srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(dev_attr.max_sge,
2917 : NVME_RDMA_DEFAULT_RX_SGE);
2918 :
2919 0 : poller->srq = spdk_rdma_provider_srq_create(&srq_init_attr);
2920 0 : if (poller->srq == NULL) {
2921 0 : SPDK_ERRLOG("Unable to create SRQ.\n");
2922 0 : goto fail;
2923 : }
2924 :
2925 0 : opts.num_entries = g_spdk_nvme_transport_opts.rdma_srq_size;
2926 0 : opts.rqpair = NULL;
2927 0 : opts.srq = poller->srq;
2928 0 : opts.mr_map = poller->mr_map;
2929 :
2930 0 : poller->rsps = nvme_rdma_create_rsps(&opts);
2931 0 : if (poller->rsps == NULL) {
2932 0 : SPDK_ERRLOG("Unable to create poller RDMA responses.\n");
2933 0 : goto fail;
2934 : }
2935 :
2936 0 : rc = nvme_rdma_poller_submit_recvs(poller);
2937 0 : if (rc) {
2938 0 : SPDK_ERRLOG("Unable to submit poller RDMA responses.\n");
2939 0 : goto fail;
2940 : }
2941 :
2942 : /*
2943 : * When using an srq, fix the size of the completion queue at startup.
2944 : * The initiator sends only send and recv WRs. Hence, the multiplier is 2.
2945 : * (The target sends also data WRs. Hence, the multiplier is 3.)
2946 : */
2947 0 : num_cqe = g_spdk_nvme_transport_opts.rdma_srq_size * 2;
2948 : } else {
2949 9 : num_cqe = DEFAULT_NVME_RDMA_CQ_SIZE;
2950 : }
2951 :
2952 9 : max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size;
2953 9 : if (max_num_cqe != 0 && num_cqe > max_num_cqe) {
2954 0 : num_cqe = max_num_cqe;
2955 : }
2956 :
2957 9 : poller->cq = ibv_create_cq(poller->device, num_cqe, group, NULL, 0);
2958 :
2959 9 : if (poller->cq == NULL) {
2960 2 : SPDK_ERRLOG("Unable to create CQ, errno %d.\n", errno);
2961 2 : goto fail;
2962 : }
2963 :
2964 7 : STAILQ_INSERT_HEAD(&group->pollers, poller, link);
2965 7 : group->num_pollers++;
2966 7 : poller->current_num_wc = num_cqe;
2967 7 : poller->required_num_wc = 0;
2968 7 : return poller;
2969 :
2970 2 : fail:
2971 2 : nvme_rdma_poller_destroy(poller);
2972 2 : return NULL;
2973 : }
2974 :
2975 : static void
2976 3 : nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group)
2977 : {
2978 : struct nvme_rdma_poller *poller, *tmp_poller;
2979 :
2980 5 : STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) {
2981 2 : assert(poller->refcnt == 0);
2982 2 : if (poller->refcnt) {
2983 0 : SPDK_WARNLOG("Destroying poller with non-zero ref count: poller %p, refcnt %d\n",
2984 : poller, poller->refcnt);
2985 : }
2986 :
2987 2 : STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
2988 2 : nvme_rdma_poller_destroy(poller);
2989 : }
2990 3 : }
2991 :
2992 : static struct nvme_rdma_poller *
2993 8 : nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, struct ibv_context *device)
2994 : {
2995 8 : struct nvme_rdma_poller *poller = NULL;
2996 :
2997 10 : STAILQ_FOREACH(poller, &group->pollers, link) {
2998 3 : if (poller->device == device) {
2999 1 : break;
3000 : }
3001 : }
3002 :
3003 8 : if (!poller) {
3004 7 : poller = nvme_rdma_poller_create(group, device);
3005 7 : if (!poller) {
3006 2 : SPDK_ERRLOG("Failed to create a poller for device %p\n", device);
3007 2 : return NULL;
3008 : }
3009 : }
3010 :
3011 6 : poller->refcnt++;
3012 6 : return poller;
3013 : }
3014 :
3015 : static void
3016 6 : nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, struct nvme_rdma_poller *poller)
3017 : {
3018 6 : assert(poller->refcnt > 0);
3019 6 : if (--poller->refcnt == 0) {
3020 5 : STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
3021 5 : group->num_pollers--;
3022 5 : nvme_rdma_poller_destroy(poller);
3023 : }
3024 6 : }
3025 :
3026 : static struct spdk_nvme_transport_poll_group *
3027 1 : nvme_rdma_poll_group_create(void)
3028 : {
3029 : struct nvme_rdma_poll_group *group;
3030 :
3031 1 : group = calloc(1, sizeof(*group));
3032 1 : if (group == NULL) {
3033 0 : SPDK_ERRLOG("Unable to allocate poll group.\n");
3034 0 : return NULL;
3035 : }
3036 :
3037 1 : STAILQ_INIT(&group->pollers);
3038 1 : TAILQ_INIT(&group->connecting_qpairs);
3039 1 : TAILQ_INIT(&group->active_qpairs);
3040 1 : return &group->group;
3041 : }
3042 :
3043 : static int
3044 0 : nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
3045 : {
3046 0 : return 0;
3047 : }
3048 :
3049 : static int
3050 0 : nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
3051 : {
3052 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3053 0 : struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
3054 :
3055 0 : if (rqpair->link_connecting.tqe_prev) {
3056 0 : TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting);
3057 : /* We use prev pointer to check if qpair is in connecting list or not .
3058 : * TAILQ_REMOVE doesn't do it. So, we do it manually.
3059 : */
3060 0 : rqpair->link_connecting.tqe_prev = NULL;
3061 : }
3062 :
3063 0 : return 0;
3064 : }
3065 :
3066 : static int
3067 0 : nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
3068 : struct spdk_nvme_qpair *qpair)
3069 : {
3070 0 : return 0;
3071 : }
3072 :
3073 : static int
3074 0 : nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
3075 : struct spdk_nvme_qpair *qpair)
3076 : {
3077 0 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3078 0 : struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
3079 :
3080 0 : if (rqpair->link_active.tqe_prev) {
3081 0 : TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active);
3082 0 : rqpair->link_active.tqe_prev = NULL;
3083 : }
3084 :
3085 0 : return 0;
3086 : }
3087 :
3088 : static inline void
3089 0 : nvme_rdma_qpair_process_submits(struct nvme_rdma_poll_group *group,
3090 : struct nvme_rdma_qpair *rqpair)
3091 : {
3092 0 : struct spdk_nvme_qpair *qpair = &rqpair->qpair;
3093 :
3094 0 : assert(rqpair->link_active.tqe_prev != NULL);
3095 :
3096 0 : if (spdk_unlikely(rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING ||
3097 : rqpair->state >= NVME_RDMA_QPAIR_STATE_EXITING)) {
3098 0 : return;
3099 : }
3100 :
3101 0 : if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
3102 0 : nvme_rdma_qpair_check_timeout(qpair);
3103 : }
3104 :
3105 0 : nvme_rdma_qpair_submit_sends(rqpair);
3106 0 : if (!rqpair->srq) {
3107 0 : nvme_rdma_qpair_submit_recvs(rqpair);
3108 : }
3109 0 : if (rqpair->num_completions > 0) {
3110 0 : nvme_qpair_resubmit_requests(qpair, rqpair->num_completions);
3111 0 : rqpair->num_completions = 0;
3112 : }
3113 :
3114 0 : if (rqpair->num_outstanding_reqs == 0 && STAILQ_EMPTY(&qpair->queued_req)) {
3115 0 : TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active);
3116 : /* We use prev pointer to check if qpair is in active list or not.
3117 : * TAILQ_REMOVE doesn't do it. So, we do it manually.
3118 : */
3119 0 : rqpair->link_active.tqe_prev = NULL;
3120 : }
3121 : }
3122 :
3123 : static int64_t
3124 0 : nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
3125 : uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
3126 : {
3127 : struct spdk_nvme_qpair *qpair, *tmp_qpair;
3128 : struct nvme_rdma_qpair *rqpair, *tmp_rqpair;
3129 : struct nvme_rdma_poll_group *group;
3130 : struct nvme_rdma_poller *poller;
3131 0 : int batch_size, rc, rc2 = 0;
3132 0 : int64_t total_completions = 0;
3133 0 : uint64_t completions_allowed = 0;
3134 0 : uint64_t completions_per_poller = 0;
3135 0 : uint64_t poller_completions = 0;
3136 0 : uint64_t rdma_completions;
3137 :
3138 0 : if (completions_per_qpair == 0) {
3139 0 : completions_per_qpair = MAX_COMPLETIONS_PER_POLL;
3140 : }
3141 :
3142 0 : group = nvme_rdma_poll_group(tgroup);
3143 :
3144 0 : STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
3145 0 : rc = nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
3146 0 : if (rc == 0) {
3147 0 : disconnected_qpair_cb(qpair, tgroup->group->ctx);
3148 : }
3149 : }
3150 :
3151 0 : TAILQ_FOREACH_SAFE(rqpair, &group->connecting_qpairs, link_connecting, tmp_rqpair) {
3152 0 : qpair = &rqpair->qpair;
3153 :
3154 0 : rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
3155 0 : if (rc == 0 || rc != -EAGAIN) {
3156 0 : TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting);
3157 : /* We use prev pointer to check if qpair is in connecting list or not.
3158 : * TAILQ_REMOVE does not do it. So, we do it manually.
3159 : */
3160 0 : rqpair->link_connecting.tqe_prev = NULL;
3161 :
3162 0 : if (rc == 0) {
3163 : /* Once the connection is completed, we can submit queued requests */
3164 0 : nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
3165 0 : } else if (rc != -EAGAIN) {
3166 0 : SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
3167 0 : nvme_rdma_fail_qpair(qpair, 0);
3168 : }
3169 : }
3170 : }
3171 :
3172 0 : STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
3173 0 : rqpair = nvme_rdma_qpair(qpair);
3174 :
3175 0 : if (spdk_likely(nvme_qpair_get_state(qpair) != NVME_QPAIR_CONNECTING)) {
3176 0 : nvme_rdma_qpair_process_cm_event(rqpair);
3177 : }
3178 :
3179 0 : if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
3180 0 : rc2 = -ENXIO;
3181 0 : nvme_rdma_fail_qpair(qpair, 0);
3182 : }
3183 : }
3184 :
3185 0 : completions_allowed = completions_per_qpair * tgroup->num_connected_qpairs;
3186 0 : if (group->num_pollers) {
3187 0 : completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1);
3188 : }
3189 :
3190 0 : STAILQ_FOREACH(poller, &group->pollers, link) {
3191 0 : poller_completions = 0;
3192 0 : rdma_completions = 0;
3193 : do {
3194 0 : poller->stats.polls++;
3195 0 : batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL);
3196 0 : rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, poller, NULL, &rdma_completions);
3197 0 : if (rc <= 0) {
3198 0 : if (rc == -ECANCELED) {
3199 0 : return -EIO;
3200 0 : } else if (rc == 0) {
3201 0 : poller->stats.idle_polls++;
3202 : }
3203 0 : break;
3204 : }
3205 :
3206 0 : poller_completions += rc;
3207 0 : } while (poller_completions < completions_per_poller);
3208 0 : total_completions += poller_completions;
3209 0 : poller->stats.completions += rdma_completions;
3210 0 : if (poller->srq) {
3211 0 : nvme_rdma_poller_submit_recvs(poller);
3212 : }
3213 : }
3214 :
3215 0 : TAILQ_FOREACH_SAFE(rqpair, &group->active_qpairs, link_active, tmp_rqpair) {
3216 0 : nvme_rdma_qpair_process_submits(group, rqpair);
3217 : }
3218 :
3219 0 : return rc2 != 0 ? rc2 : total_completions;
3220 : }
3221 :
3222 : /*
3223 : * Handle disconnected qpairs when interrupt support gets added.
3224 : */
3225 : static void
3226 0 : nvme_rdma_poll_group_check_disconnected_qpairs(struct spdk_nvme_transport_poll_group *tgroup,
3227 : spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
3228 : {
3229 0 : }
3230 :
3231 : static int
3232 1 : nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
3233 : {
3234 1 : struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup);
3235 :
3236 1 : if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
3237 0 : return -EBUSY;
3238 : }
3239 :
3240 1 : nvme_rdma_poll_group_free_pollers(group);
3241 1 : free(group);
3242 :
3243 1 : return 0;
3244 : }
3245 :
3246 : static int
3247 3 : nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
3248 : struct spdk_nvme_transport_poll_group_stat **_stats)
3249 : {
3250 : struct nvme_rdma_poll_group *group;
3251 : struct spdk_nvme_transport_poll_group_stat *stats;
3252 : struct spdk_nvme_rdma_device_stat *device_stat;
3253 : struct nvme_rdma_poller *poller;
3254 3 : uint32_t i = 0;
3255 :
3256 3 : if (tgroup == NULL || _stats == NULL) {
3257 2 : SPDK_ERRLOG("Invalid stats or group pointer\n");
3258 2 : return -EINVAL;
3259 : }
3260 :
3261 1 : group = nvme_rdma_poll_group(tgroup);
3262 1 : stats = calloc(1, sizeof(*stats));
3263 1 : if (!stats) {
3264 0 : SPDK_ERRLOG("Can't allocate memory for RDMA stats\n");
3265 0 : return -ENOMEM;
3266 : }
3267 1 : stats->trtype = SPDK_NVME_TRANSPORT_RDMA;
3268 1 : stats->rdma.num_devices = group->num_pollers;
3269 :
3270 1 : if (stats->rdma.num_devices == 0) {
3271 0 : *_stats = stats;
3272 0 : return 0;
3273 : }
3274 :
3275 1 : stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats));
3276 1 : if (!stats->rdma.device_stats) {
3277 0 : SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n");
3278 0 : free(stats);
3279 0 : return -ENOMEM;
3280 : }
3281 :
3282 3 : STAILQ_FOREACH(poller, &group->pollers, link) {
3283 2 : device_stat = &stats->rdma.device_stats[i];
3284 2 : device_stat->name = poller->device->device->name;
3285 2 : device_stat->polls = poller->stats.polls;
3286 2 : device_stat->idle_polls = poller->stats.idle_polls;
3287 2 : device_stat->completions = poller->stats.completions;
3288 2 : device_stat->queued_requests = poller->stats.queued_requests;
3289 2 : device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs;
3290 2 : device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates;
3291 2 : device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs;
3292 2 : device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates;
3293 2 : i++;
3294 : }
3295 :
3296 1 : *_stats = stats;
3297 :
3298 1 : return 0;
3299 : }
3300 :
3301 : static void
3302 1 : nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
3303 : struct spdk_nvme_transport_poll_group_stat *stats)
3304 : {
3305 1 : if (stats) {
3306 1 : free(stats->rdma.device_stats);
3307 : }
3308 1 : free(stats);
3309 1 : }
3310 :
3311 : static int
3312 4 : nvme_rdma_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
3313 : struct spdk_memory_domain **domains, int array_size)
3314 : {
3315 4 : struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(ctrlr->adminq);
3316 :
3317 4 : if (domains && array_size > 0) {
3318 1 : domains[0] = rqpair->memory_domain;
3319 : }
3320 :
3321 4 : return 1;
3322 : }
3323 :
3324 : void
3325 0 : spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
3326 : {
3327 0 : g_nvme_hooks = *hooks;
3328 0 : }
3329 :
3330 : const struct spdk_nvme_transport_ops rdma_ops = {
3331 : .name = "RDMA",
3332 : .type = SPDK_NVME_TRANSPORT_RDMA,
3333 : .ctrlr_construct = nvme_rdma_ctrlr_construct,
3334 : .ctrlr_scan = nvme_fabric_ctrlr_scan,
3335 : .ctrlr_destruct = nvme_rdma_ctrlr_destruct,
3336 : .ctrlr_enable = nvme_rdma_ctrlr_enable,
3337 :
3338 : .ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4,
3339 : .ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8,
3340 : .ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4,
3341 : .ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8,
3342 : .ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async,
3343 : .ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async,
3344 : .ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async,
3345 : .ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async,
3346 :
3347 : .ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size,
3348 : .ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges,
3349 :
3350 : .ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair,
3351 : .ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair,
3352 : .ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair,
3353 : .ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair,
3354 :
3355 : .ctrlr_get_memory_domains = nvme_rdma_ctrlr_get_memory_domains,
3356 :
3357 : .qpair_abort_reqs = nvme_rdma_qpair_abort_reqs,
3358 : .qpair_reset = nvme_rdma_qpair_reset,
3359 : .qpair_submit_request = nvme_rdma_qpair_submit_request,
3360 : .qpair_process_completions = nvme_rdma_qpair_process_completions,
3361 : .qpair_iterate_requests = nvme_rdma_qpair_iterate_requests,
3362 : .qpair_authenticate = nvme_rdma_qpair_authenticate,
3363 : .admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers,
3364 :
3365 : .poll_group_create = nvme_rdma_poll_group_create,
3366 : .poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair,
3367 : .poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair,
3368 : .poll_group_add = nvme_rdma_poll_group_add,
3369 : .poll_group_remove = nvme_rdma_poll_group_remove,
3370 : .poll_group_process_completions = nvme_rdma_poll_group_process_completions,
3371 : .poll_group_check_disconnected_qpairs = nvme_rdma_poll_group_check_disconnected_qpairs,
3372 : .poll_group_destroy = nvme_rdma_poll_group_destroy,
3373 : .poll_group_get_stats = nvme_rdma_poll_group_get_stats,
3374 : .poll_group_free_stats = nvme_rdma_poll_group_free_stats,
3375 : };
3376 :
3377 1 : SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops);
|