SPDK is primarily a development kit that delivers libraries and header files for use in other applications. However, SPDK also contains a number of applications. These applications are primarily used to test the libraries, but many are full featured and high quality. The major applications in SPDK are:
There are also a number of tools and examples in the examples
directory.
The SPDK targets are all based on a common framework so they have much in common. The framework defines a concept called a subsystem
and all functionality is implemented in various subsystems. Subsystems have a unified initialization and teardown path.
The SPDK application framework defines a set of base command line flags for all applications that use it. Specific applications may implement additional flags.
Param | Long Param | Type | Default | Description |
---|---|---|---|---|
-c | –config | string | Configuration file | |
-d | –limit-coredump | flag | false | Limit coredump |
-e | –tpoint-group | integer | Tracepoint group mask | |
-g | –single-file-segments | flag | Create just one hugetlbfs file | |
-h | –help | flag | show all available parameters and exit | |
-i | –shm-id | integer | Multi process mode | |
-m | –cpumask | CPU mask | 0x1 | application CPU mask |
-n | –mem-channels | integer | all channels | number of memory channels used for DPDK |
-p | –main-core | integer | first core in CPU mask | main (primary) core for DPDK |
-r | –rpc-socket | string | /var/tmp/spdk.sock | RPC listen address |
-s | –mem-size | integer | all hugepage memory | Memory size |
–silence-noticelog | flag | disable notice level logging to stderr | ||
-u | –no-pci | flag | Disable PCI access. | |
–wait-for-rpc | flag | Deferred initialization | ||
-B | –pci-blocked | B:D:F | PCI address blocked and allowed lists. | |
-A | –pci-allowed | B:D:F | PCI address blocked and allowed lists. | |
-R | –huge-unlink | flag | Unlink hugepage files after initialization | |
–huge-dir | string | the first discovered | allocate hugepages from a specific mount | |
-L | –logflag | string | Log flag |
SPDK applications are configured using a JSON RPC configuration file. See JSON-RPC for details.
By default, an SPDK application will set resource limits for core file sizes to RLIM_INFINITY. Specifying --limit-coredump
will not set the resource limits.
SPDK has an experimental low overhead tracing framework. Tracepoints in this framework are organized into tracepoint groups. By default, all tracepoint groups are disabled. --tpoint-group
can be used to enable a specific subset of tracepoint groups in the application.
Note: Additional documentation on the tracepoint framework is in progress.
SPDK applications progress through a set of states beginning with STARTUP
and ending with RUNTIME
.
If the --wait-for-rpc
parameter is provided SPDK will pause just before starting framework initialization. This state is called STARTUP
. The JSON RPC server is ready but only a small subset of commands are available to set up initialization parameters. Those parameters can't be changed after the SPDK application enters RUNTIME
state. When the client finishes configuring the SPDK subsystems it needs to issue the framework_start_init RPC command to begin the initialization process. After rpc_framework_start_init
returns true
SPDK will enter the RUNTIME
state and the list of available commands becomes much larger.
To see which RPC methods are available in the current state, issue the rpc_get_methods
with the parameter current
set to true
.
For more details see JSON-RPC documentation.
Instead of creating one hugetlbfs file per page, this option makes SPDK create one file per hugepages per socket. This is needed for Virtio driver to be used with more than 8 hugepages. See 2MB hugepages.
When --shm-id
is specified, the application is started in multi-process mode. Applications using the same shm-id share their memory and NVMe devices. The first app to start with a given id becomes a primary process, with the rest, called secondary processes, only attaching to it. When the primary process exits, the secondary ones continue to operate, but no new processes can be attached at this point. All processes within the same shm-id group must use the same –single-file-segments setting.
Total size of the hugepage memory to reserve. If DPDK env layer is used, it will reserve memory from all available hugetlbfs mounts, starting with the one with the highest page size. This option accepts a number of bytes with a possible binary prefix, e.g. 1024, 1024M, 1G. The default unit is megabyte.
Starting with DPDK 18.05.1, it's possible to reserve hugepages at runtime, meaning that SPDK application can be started with 0 pre-reserved memory. Unlike hugepages pre-reserved at the application startup, the hugepages reserved at runtime will be released to the system as soon as they're no longer used.
If SPDK is run with PCI access disabled it won't detect any PCI devices. This includes primarily NVMe and IOAT devices. Also, the VFIO and UIO kernel modules are not required in this mode.
If blocked list is used, then all devices with the provided PCI address will be ignored. If an allowed list is used, only allowed devices will be probed. -B
or -A
can be used more than once, but cannot be mixed together. That is, -B
and -A
cannot be used at the same time.
By default, each DPDK-based application tries to remove any orphaned hugetlbfs files during its initialization. This option removes hugetlbfs files of the current process as soon as they're created, but is not compatible with --shm-id
.
Enable a specific log type. This option can be used more than once. A list of all available types is provided in the --help
output, with --logflag all
enabling all of them. Additionally enables debug print level in debug builds of SPDK.
Whenever the CPU mask
is mentioned it is a string in one of the following formats:
The following CPU masks are equal and correspond to CPUs 0, 1, 2, 8, 9, 10, 11 and 12: